
 

iáëí=çÑ=oÉÑÉêÉåÅÉë=

Dr. C. Lee Giles
David Reese Professor of Information Sciences and Technology, Penn State
Email: giles@ist.psu.edu
Phone: +1 (814) 865-7884

Dr. John T. Hale
Associate Professor of Linguistics, Cornell University 
and Google DeepMind, London
Email: jthale@cornell.edu
Phone: +1 (607) 255-0733

Dr. Michael T. Putnam
Associate Professor of German and Linguistics, Penn State
Email: mtp12@psu.edu
Phone: +1 (814) 863-2138

Dr. Frank E. Ritter
Professor of Information Sciences and Technology, and of Psychology, Penn State
Email: frank.ritter@psu.edu
Phone: +1 814 865-4453

Dr. Christian Lebiere
Research Faculty, Psychology, Carnegie Mellon University
Email: cl@cmu.edu
Phone: +1 412 268-6028 

Dr. Johanna D. Moore
Professor and Head of School, Informatics, University of Edinburgh
Email: J.Moore@ed.ac.uk
Phone: +44 131 651 1336

david=reitter

Teaching Statement

The best students and the best teachers have much in common. They are open-minded,
critical, constructive, eager to learn from each other and inquisitive. That is who I aspire
to be as a teacher. As an instructor at Carnegie Mellon and Penn State, I have developed
a number of core ideas to guide my teaching. These principles encourage students to
experiment, to dig deeper, and to connect with the materials and the ϐield of research.
The only mechanism for an active researcher to teach effectively is to teach efϐiciently
with well-organizedmaterials andwell-thought-out projects. This applies to both areas I
have taught: cognitive science and computer science. I have taught at the undergraduate
and graduate levels; occasionally, I have been invited to teach cognitive science at inter-
national summer schools (e.g., at King Abdullah University of Science and Technology,
Saudi Arabia, and Sunkyunkwan University, Seoul, South Korea).
Especially in my programming classes at Penn State I found that my role shifted from

that of a lecturer to that of an instigator and motivator; learning in these classes hap-
pened as students practiced creating algorithms and translating them into code. In the
best case, they learn to research their own questions rather than being fed memoriz-
able knowledge. In the following, I will describe some tools that I developed to facilitate
this. This can apply to teaching science classes as well; instead of developing algorithms,
students become familiar with existing theories and then develop experiments whose
outcomes may modify the theoretical models.

Learningmust be experienƟal. To takeanexample frommycognitive science class: many
classical experiments can be conducted easily in class. For example, original video and
audio material from experiments or datasets may illustrate how lesions in certain lan-
guage centers in the brain affect a person’s speech. I let students diagnose Broca’s and
Wernicke’s aphasias based on video recordings; I demonstrate the reliability of judge-
ments of crowds, where the audience is to guess the weight of a bull shown in a picture
(a classical experiment). In my Cognitive Psychology class at CMU, I also used an online
experiment system, CogLab, which allowed students take a range of classical behavioral
experiments. The students’ data were then later discussed in class. In my programming
classes, problem-based learning has come to be the standard approach; I rarely lecture
using prepared slides now. Students either observe a demonstration of how to solve a
programming problem (from scratch), they engage with me during the demonstration,
they are guided in addressing the problem themselves (with checkpoints), or they tackle
it in their own time. In such cases, I promote group-work, but discourage adopting spe-
ciϐic roles in lieu of gaining individual technical expertise. (Each student submits their
own assignments.)

1

Classes have to put individual results in context. Models and theories are essential in un-
derstanding why humans behave in certain ways, and they are instrumental in telling us
what questions to ask next. While we have to justify theories and models with empirical
results, it is important to paint “the big picture”. As we know, memory performance is
improvedwhere expectations are created and contextual cues ground facts in systematic
knowledge. I refer to theoretical considerations, but also realistic experiences and prac-
tical applications. My computer science teaching in Edinburgh and at Penn State gaveme
the opportunity to discuss algorithms and artiϐicial-intelligence processing strategies not
just from a theoretical standpoint, but also in the context of actual applications. Cognitive
science givesme the opportunity to point out connections between the study of themind
and philosophy, or computer science.

We need to be up-to-date. Howwe present research depends on the class. An introduc-
tory class may cover ongoing, much-publicized discussions—can starlings process some
form of grammar, and what does that mean, if anything? A graduate class will involve
reading current papers. However, what is critical for both is the need to go beyond the
historical account of howour ϐield came about and engage students in debates of our time
in order to stimulate interest and enthusiasm for cognitive science and computational
methods. Interaction with researchers that continue to make ongoing contributions to
their ϐields is what makes the difference between attending a research university and
reading textbooks. I have repeatedly engaged even undergraduates with research topics,
simply by inviting them to attend overview talks and participate in the academic life in
the department.

Wemust teach the scienƟfic method. We need to teach critical thinking, questioning re-
sults, and modeling. Scientiϐic thinking provides valuable life lessons—they are not just
training for future scientists. Concretely, we need to explain experimental design and
careful statistical analysis. Even though many details may be left out in classes that do
not explicitly deal with methods, a critical, careful approach applies to all of the work we
present. A large, introductory overview class in science has to explain experimentation
and the notions of controls and confounds. An advanced class will critically evaluate re-
search papers. Engagingwith data allows students to develop hypotheses, test them, and
modify their models. In my class at Carnegie Mellon, I invited two teaching assistants to
present their senior thesis works as a demonstration of the scientiϐic contributions un-
dergraduates and their advisors can make. In my undergraduate and graduate classes
in cognitive science at Penn State and in Korea, students have the opportunity to design
their own experiments to test a theoretical prediction that they ϐirst deϐine themselves.
Informally, the experiment is carried out in class, and students then analyze the results,
often conϐirming or disconϐirming classic theories.

We should moƟvate students to work independently. I believe in fostering independent
thinking. I encourage more advanced students to take responsibility for their learning
and to engage in the topic critically, rather than absorbing pre-digested material in small
portions. I am aware and concerned that we are often unable to give individual attention
to students in large classes, and thatwe tend to design exams according to the constraints
posed by undergraduate graders who compare answers against a key. Thus, fostering
creativity requires that I pointmy students to relevant literature and suggest areaswhere
they can ϐind motivation to design their own challenges. It also means that I expect them
to come up with project ideas rather than, ϐiguratively speaking, to ϐill-in-the-blanks on a

2

Figure 1: One of the more complex scenar-
ios. The wolf is on the left and four
sheep are visible on the right. Not
all of them possess enough spatial
intelligence to leave the box.

prepared worksheet. I am aware that we need to meet students where they are and not
where we would like them to be. It is our job to guide them there.

These principles are embodied in the game of Wolves and Sheep. Programming can be
a tough skill to learn. Those who excel at it have often started early. Most have spent
countless nights doing detective work to ϐigure out why their program does not work
right. Programming takes a range of abilities beyond robust general computing skills:
the syntax of an artiϐicial language, the creative use of algebra, and intuitionwhen to plan
ahead and when to try out ideas in practice. Programmers read and write technical doc-
umentation, research tricky questions, and relate their work to business requirements.
Learning these skills is a frustrating mountain ascent, with rocks in the way and many
minor falls after which a climber has to get up and try again. All of this takes a great deal
of motivation. A recently popular incentive in areas from crowdsourcing to classroom
instruction is gamiϐication. At Penn State, I have developed a game for my programming
class that balances teamwork and individual work and addresses important lessons to be
learned by novice programmers.
Thebasic idea is as follows. Studentswrite small computerprograms that act asplayers

in a bigger bio-simulation. The simulated world has players move about a two-dimen-
sional barren landscape with some obstacles and a fewmeadows. The players are of two
kinds: sheep and wolves. The sheep aim to feed by moving to a meadow. Unfortunately,
the wolves need to eat, too. The idea of computer programs as independent entities in a
toy world is inspired by learning pioneers like Seymour Papert (“Logo”), who proposed
“body-syntonic reasoning” as away to learn algorithmic creativity (S. Papert. Mindstorms:
Children, computers, and powerful ideas. Basic Books, New York, NY, 1980.)
The small agent programswrittenby the students play against eachother in each round

of the game. During the game, each player makes one step at a time in any direction on
the game board, avoiding obstacles. A sheep’s objective is to reach a goal location, while
a wolf’s objective is to eat a sheep.
The two-dimensional worlds these animals live in come in different scenarios. Some-

times, obstacles are arranged in a way that requires some navigation (see Fig. 1). Green
pastures and start locations of the players are not always in the same place. Students are

3

given about 10 practice scenarios, but the tournament is run in earnest with additional,
new ones. Such caveats force students to think about ϐlexible strategies and implemen-
tations, which is an important real-world requirement. If a student’s program assumes
that obstacles or pastures are always in the same place, the bot will lose.
Each scenario starts with four sheep and one wolf at predeϐined or random locations

(see Fig. 1). All players then take turns moving about; sheep naturally try to get to a
green pasture as quickly as possible. The wolf attempts to get to and eat as many sheep
as possible before they reach the pasture. The game ends when each sheep is dead or
grazing happily, or when a timeout is reached.
I typically spend a number of sessions with the students to become familiar with the

tournament interface. They work in small teams to help each other, although each stu-
dent will submit his or her own, competitive program. Students can submit code at any
time through a website. Their code runs in a tournament that starts out with some tried-
and-tested players. The results are published immediately so that students can make
incremental progress, but also feel motivated by the progress of their classmates.
Students sometimes do their own research to ϐind algorithms for their bot, e.g., for

path-planning. I have seen programming novices implement their own version of an A-
Star search algorithm for this project. Many students tell me that they worked harder for
this project than on any other one. I solicit regular comments on the class throughout
each semester. As an example, here is one piece of feedback I received:

I thought that the Wolves and Sheep project was a lot of fun. I believe that it was a very
unique opportunity to learn programming that Iwouldn’t have been offered if I hadn’t taken
this class. While I thought it was challenging (perhaps too challenging for someone that
has no interest in learning programming) I think I got a lot out of the project. I never would
have learned what an A* algorithm was if not for the project, much less attempted to write
a program that used one. Prior to this class, I’d never written a line of Java before. Coming
out of the class, I feel very conϔident in my abilities to learn and understand programming.
Bottom line, I had a great time writing my Sheep program and I really enjoyed the project.
(See also: D. Reitter. Hungry wolves, creepy sheepies: The gamiϐication of the pro-

grammer’s classroom. In J. M. Carroll (Ed.), Innovative Practices in Teaching Information
Sciences and Technology. Springer, New York, NY, 2014.)

Classes I Have Taught

I have taught classes at various levels at several universities. At Penn State, I taught cog-
nitive science at the undergraduate information science majors (25 students), and also
at the graduate level (12 students). I also taught programming (undergraduate begin-
ner and intermediate-level, about 40 students per section). At Carnegie Mellon, I taught
Cognitive Psychology, a large undergraduate overview class (140 students). I taught this
class in short form to a graduate audience in Saudi Arabia and in South Korea.
I have also developed a new Data Science class that teaches R, visualization, and that

introduces statistical modeling including standard machine-learning approaches. Em-
pirical methodology is important to future computer engineers. I am also interested in
teaching human-computer interaction, either as it relates to design (software develop-
ment; desktop andmobile), ormore from a human performance perspective (perception,
higher-level cognition, language, modeling). I think that computational cognitive science
has much to offer to students of computer science, as it captures important lessons for
human behavior, such as those concerning learning, and decision-making under uncer-
tainty (e.g., economic models of behavior).

4

