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1. Introduction

1.1. An attempt to motivate rhetorical analysis

Almost every author of a text has a mission: he or she wants to make an argument in
support of an opinion or of information given, giving backgrounds, reasons, and discussing
seemingly incompatible observations about the world. Hardly anyone tries to achieve this
mission by just writing down a collection of singular statements. What readers would like
to read, is a text.

Isn’t a text merely a collection of statements? It is more than that! One of the central
properties that distinguishes a text from a collection of random sentences is that one part
of text builds on the other. A measure for this trait is coherence. The Purdue University
Online Writing Lab gives an informal definition of coherence:

When sentences, ideas, and details fit together clearly, readers can follow along
easily, and the writing is coherent. The ideas tie together smoothly and clearly.

So, pieces of coherent text are connected. Can we define a typology of these connections?
Yes, we can. Quite a few statements elaborate on the one they follow in a text. Other
statements are in a contrastive relationship, yet others are connected in a time-related
fashion, describing events that happened after each other. Some theories of rhetorical
structure define even 300 different rhetorical relationships.

It’s not only the case for single sentences that should form an argumentative chain in a
well written text. Surprisingly, the same kind of rhetorical relations that can hold between
small pieces of text, also occur between larger spans of text. Each span can be divided into
two or more smaller spans, which are connected by rhetorical relations. In linguistic terms,
the rhetorical analysis of a text document forms a tree.

In a nutshell, this thesis is about how to recognize the types of relations that connect
small chunks of coherent text. The motivation behind this is that in almost all cases it is
imperative to recognize the relationship between the parts in order to understand a text.
Luckily, many people who speak or write have, in the early stages of their education, learned
to structure their thoughts.1 In order to facilitate communication, relations between the
text spans are marked by means of phrases like but or in order to, and, in written text, by
a colon. But it wouldn’t be natural language if these cue phrases could easily be linked to
a rhetorical relation. They are highly ambiguous. Nevertheless we can use a range of cues
to make a good guess about the structure of rhetorical relations.

Natural language technology has been devoting an increasing amount of work to rhetorical
analysis. There are good reasons for this interest. Rhetorical structure influences both
natural language generation and analysis. Rhetorical parsing is an important precursor to

1Those who didn’t get a job in legislation, as law makers produce one of the very few kinds of text that
don’t show rhetorical structure.
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1. Introduction

selecting and evaluating information, for example in summarization or semantic indexing.
In speech synthesis, rhetorical information would be useful to determine prosody and pauses.

Linguistic accounts have the luxury to assume the availability of world knowledge and
inference for rhetorical analysis. Automated systems resort, with quite some success, to a
combination of little linguistic knowledge and a lot of shallow processing. How far can this
carry us in rhetorical analysis? How can such an analyzer be built and optimized? Which
rhetorical clues are hidden in text, especially apart from overtly formulated connectives?
How much can the clues help to improve recognition performance?

A contribution to answer these questions will not only provide better document analysis
techniques; it might also clarify our intuitions about style and the rhetorical tricks in natural
language communication.

1.2. Accounts for rhetorical structure

Besides the fairly obvious macro-structure in the organization of texts in a work2, and be-
sides the well-understood syntactic and sub-syntactic structure, text generally shows rhetor-
ical phenomena. Discourse structure mirrors coherence phenomena in texts, which describe
how single semantic propositions or small spans of text are interrelated. Well structured
text in this sense can make a concise argument.

One of the most prominent models for discourse is Rhetorical Structure Theory (Mann &
Thompson, 1988, RST). This theory defines a set of relations that can hold between given
spans of text. Common relations include Elaboration(A,B), which is defined as a text
span B which gives additional information regarding the facts presented in span A, and
Contrast, which is defined as the contents of two or more text spans being knowingly
presented as incompatible.

Sandra Thompson and Bill Mann chose their rhetorical relations with a functional goal in
mind: relations should reflect coherence phenomena. Their definitions are not constrained
to refer to properties from classical linguistic or computational processing levels. Semantic
and world-knowledge based constraints interact with the presumed writer’s or speaker’s
intentions.

Nuclei and Satellites: In RST, each text span takes on one of two roles in a relation: it
may be a nucleus or a satellite. Nuclei are considered essential to the understanding of the
text, satellites contribute additional information. The relations that hold between spans
may be either paratactic or hypotactic. Paratactic relations connect two or more equally
weighted spans of text and assign the same role to each of them. Hypotactic relations hold
between one nucleus span and one satellite span (Figure 1.1).

To facilitate the distinction between the two roles of spans for human annotators, Carlson
& Marcu (2001) give the following explanations:

Deletion test. When a satellite of a relation is deleted, the segment that is
left, i.e., the nucleus, can still perform the same function in the text, although

2An example for this macro-structure can be seen in this thesis, which consists of chapters, sections and
subsections, footnotes and headlines.
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1. Introduction

R

Justify

R

Condition

1A 1B 	

Volitional-Result

1C 1D

[And if the truck driver’s just don’t want
to stick to the speed limits,]1A [noise and
resentments are guaranteed.]1B [It is there-
fore legitimate to ask for proper roads
and speed checks.]1C [And the city officials
have signaled to support local citizens.]1D

(maz5007e)

Figure 1.1.: Example for an analysis with hypotactic relations in RST.

it may be somewhat weaker. When the nucleus is deleted, the segment that is
left is much less coherent.

Replacement test. Unlike the nucleus, a satellite can be replaced with different
information without altering the function of the segment.

These rhetorical relations can hold between adjacent text spans of any length. Spans con-
nected by a relation are subject to a new relation, and so on. This way, the analysis of a
coherent text is a tree structure. (For a more elaborate example, see Figure 4.1, page 24.)

Rhetorical relations can be signaled in a text by various means. The most striking type
of signal is the cue phrase (or: discourse marker, connective). Among the common English
cue phrases are However, thus, so, but, on the one/other hand. Usually, these cue phrases
signal the rhetorical relation of the text span they occur in one of its adjacent text spans.
Punctuation and text layout play a similar role. In this thesis, I examine other properties
of text that can give hints at rhetorical structure. Virtually all of these clues are highly
ambiguous: as may signal a temporal or a causal relation, even though may be used to make
a Concession or to discuss a Contrast. It should be noted that while these clues facilitate
the understanding of a text, coherence phenomena ultimately depend on the semantics of
the text and its referential structure.

1.3. Goals, methodology, and structure

The issues this thesis wishes to contribute are:

• demonstrating and evaluating in rhetorical analysis the use of a novel machine learning
framework: Support vector machines, which often outperform other algorithms in
difficult learning tasks.

• application of classifiers to the tasks of rhetorical relation assignment, nuclearity as-
signment and discussing a parsing algorithm based on these classifiers

• establishing a quantitative measure for several surface properties used in rhetorical
analysis

• collecting a new rhetorical corpus
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1. Introduction

• formalizing under-specified rhetorical structure.

From a point of methodology, I will motivate the use of shallow features in rhetorical analysis
informally, but linguistically. Features and algorithms are evaluated quantitatively; they
were optimized using iterative evaluation. Human judgement of trained experts (annotators)
constitutes the gold standard for evaluation. The methods used in the implementation
ensure reusability and extensibility; they are shortly documented using the state-of-the-art
methodologies established in industrial practice.

Evaluation does not merely rely on the self-collected data. Besides the German language
corpus, we evaluate our analysis approach on a large English corpus of newspaper articles.
Examples from both corpora appear throughout this thesis. Evaluation focuses on the
detection of rhetorical relations. This is a scope-limiting decision that does not hinder us
from a discussion of further analysis methods.

In the following, I will establish a background picture discussing related work in text
linguistics. Other work that is pertinent to the aspects of the thesis are discussed in the
appropriate chapters. Chapter 3 describes the collection of data, which establishes both a
gold standard for evaluation and a training corpus for the machine-learning algorithms in
the approach. With this data in mind, we can find a suitable and universal representation,
URML, which is discussed in Chapter 4. This representation makes several important
assumptions about rhetorical structure, but provides the flexibility needed to apply several
annotation algorithms to the texts to be analyzed. The algorithms are discussed in Chapter
5, which also introduces the reader – assuming only little background in corpus linguistics
and statistical theory – to the machine learning approach taken. The implementation of the
different tools is sketched out in Chapter 6; it is used in a mostly quantitative evaluation
and analysis of the central methods in Chapter 7.
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2. Related Work, Important Issues

Our approach is informed by various fields, among them rhetorical analysis, parsing and
machine learning. The analysis algorithm draws ideas from statistical parsing approaches
using classifiers; we discuss an example for this class of algorithms (Ratnaparkhi, 1998). The
classification models use support vector machines (Vapnik, 1995). The most notable work
in rhetorical corpus collection effort as of this writing is Carlson et al. (2001). Furthermore,
the work of Daniel Marcu has contributed significantly to the state of the art. He, among
others, develops a formal system to describe rhetorical structure and implements a rhetorical
parser based on cue phrases and some other cues. Simon Corston-Oliver uses an even
broader variety of clues for relations. These and more works will be discussed in detail in
the subsequent chapters. In the following, I will sum up the work surrounding rhetorical
structure, which is the central aspect of the thesis.

2.1. Mann & Thompson’s Rhetorical Structure Theory

The groundbreaking work of Sandra Thompson and Bill Mann Rhetorical Structure Theory
(Mann & Thompson, 1988, RST) coined a now widely adopted theory of rhetorical structure
during the 80’s. RST has received much attention in the field of natural language generation.
Here, rhetorical structure provides the basis for inserting connectives (Scott & Sieckenius
de Souza, 1990; Rösner & Stede, 1992; Hovy, 1993). RST has been complemented by more
dynamic views of text as Grosz & Sidner (1986); Grosz et al. (1995) which distinguish
intentional and linguistic structure and, as also in Kamp & Reyle (1993), a state of saliency.

2.2. Grosz & Sidner’s theory

Grosz & Sidner (1986) describe the relationships of three components of discourse structure.
Linguistic structure models the segmentation of text, which consists of smaller units, ut-
terances. Intentional structure consists of discourse segment purposes and defines relations
between them. Attentional state accounts for salient objects, properties and relations at
any given state in the discourse. The subsequently developed Centering model (Grosz et al.,
1995) provides an account for the interaction between linguistic structure and attentional
state. In this theory, Grosz, Joshi & Weinstein (1995) give a set of constraints on text. It is
stated that the more a discourse follows the centering constaints, the higher its coherence
will be. Thus, “inference load placed upon the hearer will decrease.” In these constraints,
the authors predict that the realization of referring expressions (e.g. pronouns) is governed
by discourse factors, in particular the local center of discourse. Continuation of this center
between discourse units is generally preferred over a shift of the center. Thus, continuation
versus a shift of center reflects in lexicalization of referents. Thus, we can use referring
expressions as clue to attachment decisions, i.e. to determine whether a text span is rhetor-
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2. Related Work, Important Issues

ically connected to its preceding or the following span. Also, some rhetorical relations from
RST imply a shift of center and should thus depend on referring expressions.

2.3. Formalizing the semantics of RST

Past approaches to motivating relations are based on rich semantic information (Hobbs,
1979; Fukumoto & Tsujii, 1994). Such theories describe rhetorical relations by breaking
them down to:

• a set of situational properties, referred to at two points of time in the discourse,

• atomic predicates that operate on the properties and serve as contraints.

Some of the situational properties would be:

• reader’s attitude toward the semantic content of a segment, it’s acceptance or dismissal

• reader’s or writer’s attitude toward the process of presentation of a segment

• reader’s state of informedness

Such an analysis formalizes Rhetorical Structure Theory very much according to the original
definitions of rhetorical relations. The situational properties give an algebraic account for
some of the relations.

Rhetorical relations as defined by Mann & Thompson (1988) refer to levels of discourse.
There are intentional, argumentative properties, e.g.:

• Evidence: a writer presents the satellite in order to increase the reader’s belief
presented in the nucleus,

• Antithesis: “Nucleus: ideas favored by the author. Satellite: ideas disfavored by
the author”,

• Concession: “Nucleus: situation affirmed by author. Satellite: situation which is
apparently inconsistent but also affirmed by author.”

Factual information, on the other hand, is referred to in the Cause relation: “a situation
causes the other one”. This relation depends on semantic relationships of the semantic
content presented in each of the spans rather than their discoursive function. Similarly,
Mann & Thompson (1988) define Volitional Result: “Nucleus: a situation, Satellite:
another situation which is caused by that one, by someone’s deliberate action”.

This shows that Mann & Thompson (1988) account for more than mere “rhetorical”
phenomena. The theory does not strictly distinguish among them; instead, it describes
relationships on a semantic level. These interact with rhetorical structure. For instance, the
four (Non-)Volitional Cause/Result relations always designate discoursive function
with the nucleus being a center of discourse. Indeed, the authors suggest to classify relations
as being primarily concerned with “subject matter” or as mainly “presentational.” This
would need to be included in any information-based formalization of rhetorical relations.

11



2. Related Work, Important Issues

Formalization of this kind is practically applicable, as long as the text that is analyzed,
could be formalized in the same framework. This, however, is at the present stage, rather
unlikely. For this reason, I will follow a different methodology, which is based on shallow
properties that can be automatically observed in the text.

2.4. Marcu (1999): Unifying RST and Grosz & Sidner’s theory

As discussed before, Grosz et al. (1995) addresses the intentions of a writer or speaker in
its intentional structure. Expressions on this level of analysis refer not only to semantic
information contained in minimal discourse units. It is very often concerned with semantic
propositions that result from rhetorical relations between spans of text (Marcu, 1999).

[John wanted to play squash with Janet,]2A [but he also wanted to have dinner with Suzanne.]2B

[He went crazy.]2C 1

According to the Grosz, Joshi & Weinstein (1995) theory, the primary intention of the
span [2A,2B] is: Writer wants reader to believe that John wanted to do two incompatible
things. This directly results from a rhetorical relation from Thompson & Mann’s theory.
Contrast holds between 2A and 2B.

Marcu (1999) develops a formal framework that marries both theories. It operates with a
data structure of four kinds of information on each span of text. The status in the predicate
S(l, h, status) describes its role in a rhetorical relation. It may be Nucleus, Satellite
or None. By axiom, each span has exactly one piece of status information. The relation
name in the predicate T (l, h, relationname) describes the rhetorical relation that holds
between the immediate descendants of the span. Its value is a member of the finite set of
rhetorical roles. Each span has a set of salient units. These units, defined by the predicate
P (l, h, unitname) are promoted up in the tree. The last information describes the primary
intention of the given spam in a predicate I(l, h, intention). The intention is expressed in
terms of a function fI on a relation and a span. As axomatization describes, this intention
is unique for each span.

As l, h are seen as index values, Marcu makes use of traditional operators for numbers and
predicate logic. Thirteen axioms describe all constraints to operate on the system. Within
this algebra, it is possible to deduct all allowed rhetorical-intentional tree analyses, provided
the rhetorical relations that hold between spans are known and the oracle function giving
the intention of the spans is defined. Marcu’s approach is a constraint-based, symbolic
system. No probabilistic functions are defined.

Formalization of discourse theories seems to be a major step in the automatic analysis
of texts. In such a framework, empirical observations may be described and added to
a constraint-based analysis system. The crucial step is to define a semantically oriented
system for the intention function fI and to find constraints that govern possible clues for
the choice of relations.

The approach depicted in Chapter 5 uses a feature-rich classification algorithm to derive
fuzzy sets of relations between single spans. A modified version of Marcu’s framework might
be able to integrate well into our approach and derive valid trees in the light of Centering
theory.

1Example from Marcu (1999).
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2. Related Work, Important Issues

(1) R	

Evidence Justify

3A 3B
	
Evidence

3C 3D

(2)
R

Evidence

3A

	

Justify

3B
	
Evidence

3C 3D

[Also, there can be no social boundaries to the seldom-publicized topic of a community-level
obligation to social welfare.]3A [The moral responsibility is ignored. ]3B [The question is, whether
the disadvantaged group of the homeless is put away even more in their new quarters in Kyritz.]3C

[After all, their home is Wittstock.]3D (maz14071e)

Figure 2.1.: Schemas vs. binary nodes. Text translated from original.

2.5. Issues in Rhetorical Structure Theory

2.5.1. Is a single tree adequate?

The tree-structured approach of RST suggests that there is – even though several analyses
may be drawn from a text – only one structure that is faithful to the writer’s intentions. It
may however be questioned whether there is indeed such a “primary rhetorical intention”
(Grosz & Sidner, 1986). Furthermore, when it comes to automatic rhetorical analysis, a
program will have difficulties deriving the one and only correct structure. Our own approach
(to appear) tries to derive a single interpretation that most likely matches the writer’s
intention. To meet the challenge of rhetorical structure, the algorithm can also output
several likely interpretations, along with their probabilistic scores.

2.5.2. Binary trees?

The original layout of the underlying theory, described in Mann & Thompson (1988), forsees
the existence of binary hypotactic relations that may share a common nucleus. Each nucleus
and all its satellites form the instantiation of a schema. Subsequent applications of the
theory, however, mainly made use of the idea of binary trees (Cristea & Webber, 1997;
Marcu, 2000, and others). These contain a nucleus and exactly one satellite.

Translation from trees with multiple branches to binary ones is possible. In Figure 2.1,
analysis (1) can be represented as shown in analysis (2). One reason lies in the fact that
the nucleus contributes (“promotes”) the essential meaning in comparison to its satellite.
Consequently, if a relation holds between span A with several segments and span B, the
same (or, a similar) relation holds between the nucleus of span A and span B (Marcu, 2000,
compositionality criterion). Empirical evidence we gained in the collection of our newspaper
corpus supports this view: in the intuition of the annotators, in no case was the non-nucleus-
sharing, tree-structured representation representationally weaker than the nucleus-sharing
view. The choice between the two possibilities for a two-satellite-one-nucleus schema was
usually made from referential clues. Also, in the RST Discourse Treebank (Carlson et al.,
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2001), we found that only in 9 out of 41856 nuclei and satellites (or 20529 relation schemas)
there were satellites relating to a common nucleus with a different hypotactic relation.

As a consequence, we implement binary relations in our representation language URML,
but no RST schemas.

2.5.3. How can relations be motivated?

The idea of relations to hold between text spans has become a paradigm in text linguis-
tics. Also, rhetorical tree structures are a common observation in texts. Regarding the
relations, Rhetorical Structure Theory never claimed that this set be closed. Consequently,
existing relation definitions have been modified, new ones have been added since RST was
first described. More extensive sets do not necessarily subsume the others. Hovy (1990)
counts 350 relations and proposes a taxonomy of relations with three top-branching ones
Elaboration, Enhancement, and Extension.

However, the semantic nuances of relations are often fine-grained, so that it may seem
impossible to define a finite set of relations (Grosz & Sidner, 1986). Discoursive practice
may provide reasons in favor or against a new relation; linguistically observable signals
and tests – such as tests for cue phrases and for substitutability – might provide clues to
psycholinguistic reality (Knott & Dale, 1994; Knott, 1996). Hereby, the notion of linguistic
signals is not limited to cue words or syntactic phrases. Prosody plays a role, and gestures
or body language (Cassell et al., 2001).

2.5.4. What is a terminal segment?

Analogous to the relation definitions, we could pursue a semantically driven, informed def-
inition of terminal segments: “A minimal discourse unit is whatever span of text has a
unique rhetorical relation to another one.” It seems obvious that one can perform rhetorical
analysis at different granularities. While the original version of RST builds on contiguous
spans of text, many languages – in particular verb-final ones – will allow for the embedding
of phrases in verbal arguments or adjuncts that have the semantics of a proposition and can
act as rhetorical unit themselves. This leads us to discontiguous segments.

We can also define discourse units in terms of syntactic categories: every clause (Longacre,
1983) or complementizer phrase, or every sentence (Polanyi, 1988) could be a segment.
Most convincingly, minimal discourse units are created intentionally and signaled in various
ways (Grosz & Sidner, 1986). In discourse-semantic terms, they are “contextually indexed
representation[s] of information conveyed by a semiotic gesture, asserting a single state
of affairs or partial state of affairs in a discourse world” (Polanyi, 1996). Most of the
semantically oriented definitions allow for segmentations on the sub-clausal level. However,
as de Smedt et al. (1993) note, most connectives on this level are determined by syntactic
constraints rather than merely rhetorical ones. Grote et al. (1997); Schauer & Hahn (2000)
argue that adjuncts (mostly prepositional phrases) can, in certain cases, be analyzed as
discourse units.
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3.1. Introduction

Annotated corpus data is a sought-after resource. This is not a surprising fact. Rhetorical
annotation is an extremely labor-intensive process. Annotators need extensive training to
master the sometimes subtle differences in relations. They need to gain a full understanding
of each document, and even then their choices may be ambiguous.

The need for quantitative evaluation of research prototypes and the increasing popularity
of machine learning hit rhetorical analysis like many other fields in computational linguistics.
Rhetorical corpus data is rare. We therefore created a small German corpus. In the following
I will explain the design decisions involved, as well as some of the experiences made.

3.2. Previous work

The RST annotated collection of 385 newspaper articles presented by Carlson et al. (2001)
is, to the author’s knowledge, the most extensive RST corpus. It contains almost 21,800
minimal discourse units in documents of varying sizes. The corpus was quality-controlled
by tedious training of the annotators and partial blind, automated cross-validation. The
texts are a subset of the Penn Treebank, so syntactic annotations are available.

The creators of the corpus decided to assume clauses as minimal discourse units. They
were determined according to lexical and syntactic clues. Any phrase with a verb is to be a
minimal discourse unit with the exemption of subjects, objects or any (other) complements
of a main verb.

[Although Mr. Freeman is retiring,] [he will continue to work as a consultant for American
Express on a project basis.] (wsj1317)

[“The company’s current management found itself locked into this,” he said.]1 (wsj1103)

In addition to marking contiguous minimal discourse units, Carlson, Marcu & Okurowski
(2001) define embedded discourse units. These are relative clauses, nominal postmodifiers
and clauses that are surrounded by other discourse units.

[The Bush Administration,] [trying to blunt growing demands from Western Europe for a relax-
ation of controls on exports to the Soviet bloc,] [is questioning...] (wsj2326)

2

1Examples taken from Carlson et al. (2001), emphasis in original.
2Bracket annotation simplified.
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The texts were manually segmented by only two of the annotators, so that segmentation
is fairly consistent throughout the corpus.

The inventory of relations consisted of 53 mononuclear and 25 multinuclear relations.
However, during annotation, these relations were subsumed by 16 (more general) relation
classes in order to facilitate the work of the annotators.

According to Carlson et al. (2001), professional language analysts were employed as an-
notators. They received extensive training. A written manual (Carlson & Marcu, 2001)
ensures a common RST standard. After an initial phase of tagging 100 documents, annota-
tion rules were refined and inter-annotator agreement was measured.

As an agreement measure, Kappa coefficients were used (Siegel & Castellan, 1988; Marcu
et al., 1999). In the complete corpus, 53 documents were double-tagged. The Kappa values
stated indicate an increase in agreement over time, reaching values that reflect “very high
agreement” and “good agreement”. However, the last values available were calculated on
the basis of only 5 double-tagged documents.

3.3. Choosing the texts for the corpus

We chose a series of German language news commentaries, published recently in a local
newspaper, the Märkische Allgemeine Zeitung. Most of the texts concern local issues, some
address national and international issues. Average document length is 28.6 sentences. Sev-
eral general design decisions provided a context for the choice of new commentaries. Texts
should:

• expose a clear argumentative structure. Pre-existing knowledge about the writer’s
intentions should not be needed in understanding and analyzing the texts. The same
applies to contextual factual knowledge. The text genre of editorials exposes an ar-
gumentative structure, while, as journalistic principle, the writer should not bear any
intentions beyond those conclusions that result from the facts considered.

• be short enough to allow annotators to quickly gain a good understanding of their
overall structure of a document and their argumentative goals. Yet, they should be
long enough to expose the kinds of relations that possibly hold between larger spans
of texts.3

• be stylistically well-written, in terms of a match between rhetorical signals and the
intended argumentative structure,

• belong to the same genre of text. While contrastive studies of rhetorical signals or
even single instances of relations are an interesting application of a corpus, we need
enough texts (per genre) to evaluate machine-learning approaches,

3Readers of the Märkische Allgemeine Zeitung live in the small city of Potsdam and the surrounding rural
areas. Following from the fact that Germany’s most vibrant city Berlin is close-by, the paper does not
openly compete with the influential daily newspapers published in Germany’s captial. Rather, they
address local issues for ‘the common man’, whom we would not expect to possess significant background-
knowledge. This has shown to mark another item on our wish list as ‘checked’: The documents are easily
and quickly understandable.
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• be written in a language that complements efforts in other languages. The corpus is in
German — to my knowledge, this is the first corpus collection effort in this language.

All of these criteria are fulfilled by the short German language newspaper editorials, which
were written by professional journalists and selected for genre.

3.4. Text preparation and segmentation

All documents were extracted using a web crawler, which accessed the newspaper’s online
edition, stripped away layout-specific markup from the HTML code and conserved exact
source information including some meta-data regarding authorship, date, newspaper section
etc. .

We decided to automatically segment the documents into minimal discourse units, based
on shallow syntactic features. Clause borders are recognized by punctuation and finite
verbs. This segmentation is used as input for human annotators, who may not introduce
new segment borders, but withdraw segmentations by using a Joint relation. This method-
ology maintains a clear standard for segmentation and allows us to examine pure rhetorical
relations and rhetorical structure.4

3.5. Training the annotators

Two advanced linguistics students were hired full-time to work through as many texts as
possible. Prior to that, the annotators received training, discussing the original relation def-
initions as given by Mann & Thompson (1988). After 30 texts were annotated, annotations
were reviewed and, after a new training session, re-annotated.

3.6. Annotation process

Annotation was carried out using RSTTool 3.1 (O’Donnell, 2000, see Figure 3.1), a software
that provides a graphical and efficient user-interface to create RST-like structures.

We annotated the corpus with 19 relations. They are subsumed by 10 more general
relations according to semantic properties in their definitions that they share. The following
hypotactic (nucleus-satellite) were used in the corpus5 :

4Marcu (2000) identifies segments using cue phrases. The automatic segment detection, however, weakens
his system significantly: rhetorical relation recognition performance drops from 60 percent / 63 percent
(recall/precision) to 17 percent / 36 percent, when the automatic segmenter is used. (Data from (Marcu,
2000, p. 170) for Wall Street Journal corpus as test set and a combined corpus as training set. Segment
recognition performance is 25.1/79.6 percent.)

5See Mann (1999); Mann & Thompson (1988) for a definition of these relations.
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Figure 3.1.: Screenshot of RSTTool 3.0.

Hypotactic relations
Cause: Justify, Nonvolitional-Cause, Volitional-Cause
Conclusive: Evaluation, Solutionhood, Summary
Evidence
Framework: Background, Circumstance, Enablement
Preparation
Result: Nonvolitional-Result, Volitional-Result
Specification: Elaboration, Restatement
Paratactic relations
Conjunction
Contrastive: Contrast
Sequential: List, Sequence

Two of the relations offered to the annotators were not used. We assume that Summary
is not frequent in short newspaper commentaries; remaining Summary relations were most
probably marked as Restatement. Antithesis was most likely confused with its parat-
actic pendant, Contrast. Table 3.1 shows the frequency of the relations in the corpus.

The annotators completed 173 documents in about 14 person-days. Then, they switched
datasets and cross-validated their work. We decided in favor of a collaborative annotation
effort among the annotators and against a full (blind) cross-validation, where both anno-
tators would annotate the same texts, and then, an automatic inter-annotator agreement
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Table 3.1.: Relation distribution in the Potsdam Corpus

Relation Frequency Portion
Background 157 6.6%
Circumstance 35 1.5%
Concession 125 5.2%
Condition 47 2%
Conjunction 1 0%
Contrast 54 2.3%
Elaboration 738 30.9%
Enablement 2 0.1%
Evaluation 268 11.2%
Evidence 266 11.1%
Interpretation 3 0.1%
Joint 48 2%
Justify 19 0.8%
List 167 7%
Nonvolitional-cause 122 5.1%
Nonvolitional-result 54 2.3%
Preparation 161 6.7%
Restatement 4 0.2%
Sequence 27 1.1%
Solutionhood 6 0.3%
Summary 1 0%
Volitional-cause 48 2%
Volitional-result 34 1.4%

measurement would be applied. This was a trade-off decision between quality and quantity.

3.7. Conclusion and further work

Our decision to partially sacrifice automatic inter-annotator validation seems justified in
the light of a first-time, small-scale corpus-collection effort. We see the corpus as basis for
further annotation rather than as a fixed gold standard that will never be augmented. It
also serves an intended purpose for corpus usage: automatic extraction of examples and of
rhetorical signals, which are then manually examined (Berger et al., 2002). It has already
been used in other efforts related to discourse analysis. Further work should include a
thorough correction and cross-validation of the annotations.

19



4. URML: An Underspecified Representation
of Rhetorical Analyses

4.1. Introduction

The demand for annotated linguistic corpora rises steadily. Recently, work has begun on
providing data that is annotated not only on the sentence level but also on the discourse
level. In particular, ‘rhetorical annotation’ has turned out to be important for applications
such as automatic summarization. With the growing importance of machine learning and
parsing algorithms that detect rhetorical structure and evaluate the results of manual or
automatic annotation, it becomes clear that corpus data should be readable for both humans
and machines.

In the following, we discuss design considerations for an XML-based rhetorical annotation
format that is extensible and provides room for underspecification. This is a key feature for
two reasons:

• Human annotators often find it difficult to make a clear decision on either a specific
relation or the length of the spans (e.g., in the case of sentences starting with a
conjunctive adverbial: On the other hand, ...). Thus it should be possible to leave
such a matter open and represent it accordingly.

• For automatic rhetorical analysis, the problem above is much more pressing. Rather
than enforcing a decision all the time, it is desirable for a parser to leave some aspects
underspecified, represent this clearly, and possibly have additional components making
a choice later on the basis of additional knowledge. More generally, underspecification
allows for incremental rhetorical analysis based on sound representations.

We assume a theory of rhetorical description along the lines of Mann & Thompson (1988),
which assigns relations between adjacent spans of text and recursively builds up a tree. We
have applied our format to both manual and experimental automatic analyses of a new
corpus of German newspaper texts. The format is open to extension and specialization, e.g.
to enable multi-modal applications. In general, we think that the emergence of a standard
for rhetorical annotation will be instrumental for comparing analyses, and obviously for
training stochastic or machine learning algorithms.

Abridged version of this chapter, co-authored with Manfred Stede, to appear (Reitter & Stede, to appear
2003)
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4.2. Previous work

Schilder (2002) formalizes a symbolic underspecification scheme for rhetorical structure.
His relations connect Segmented Discourse Representation Structures; he explicitly states
immediate dominance, general dominance, precedence and equivalence of text spans. Similar
to our approach, a set of relations is given for the whole document, and for a specific pair
of segments, the set of relations may be constrained during one of the analysis steps. His
symbolic system is targeted at an analysis architecture based on cue phrases and a topicality
measure that both constrain the rhetorical structure. In contrast, our architecture defines a
serialized, XML based intermediate format that allows for the exchange of corpus data and
for an incremental annotation of cues and rhetorical structure. Other representation efforts
include Rehm (1998), who uses an SGML syntax to identify rhetorical cues. O’Donnell
(2000) writes annotation data from single documents in several SGML based formats that
include no underspecification. Other than this format, our representation integrates various
layers of annotation, as there seems to be a consensus that there is no single type of rhetorical
signal to be considered before a decision about rhetorical relations can be made (Marcu, 1997;
Corston-Oliver, 1998b).

Other representations aimed at corpora (XCES: Ide et al. (2000), TUSNELDA: Kallmeyer
& Wagner (2000), Text Encoding Initiative) define elaborate underspecified annotation
schemes that focus on text-organization (e.g. dialog turns, paragraphs, semantic tagging and
document-related meta data. As for the latter, the most notable standardization attempt is
the Resource Description Framework (RDF), providing a general XML-based syntax to link
arbitrary meta-data with well-defined scope. Dublin Core represents a taxonomy of meta
information that can be used to instantiate RDF.

4.3. Rhetorical annotation in URML

4.3.1. Basics

Our representation format URML (Underspecified rhetorical markup language) allows for
a free definition of dependencies among text spans. It clearly separates:

• Symbolic system and, in the document, an inventory of relation instances. A document
annotation contains a set of relations that can be found in the data. Similar to a parse
forest in syntactic parsing (Billot & Lang, 1989), it may state ambiguous relations.
Some may even be incompatible according to the axioms that defined a well-formed
rhetorical analysis.1 This is defined by the format; all relation instances may be
represented using URML.

• Axioms and, in the document, well-formed tree analyses of a text. It is up to the
client software to define restrictions that hold for well-formed analyses. A well-formed

1In URML, only one relation may constitute a satellite or a nucleus of a higher-level relation. This is a
result from the experiences made in corpus-collection and the examination of the English LDC corpus
(see sections 4.4.4 and 2.5.2). If, in contrast to the aforementioned structural property, multiple relations
are to be combined in a schema, we propose a paratactic relation of type="joint" An additional tag was
not introduced in favor of simplicity.

21



4. URML: An Underspecified Representation of Rhetorical Analyses

analysis contains a subset of the relations defined in the relation set of the document.
This well-formed analysis can also be represented and identified as such in URML.

We chose XML as underlying formalism in order to maximise re-usabilty. A “document-
type definition” grammar was defined to describe the format of documents, rhetorical and
morpho-syntactic annotations.2

In URML, all documents are contained in one single file. This facilitates automatic
handling, since the filesystem is not involved in retrieving parts of the corpus. To make use
of the XML-based data, standard XML libraries are available for all common implementation
formalisms.

The set of relations (Elaboration, Concession) are declared once for all documents
(Section 4.3.8, <reltypes>). Individual documents consist of minimal discourse units
(<text>), followed by relation nodes (<analysis>) explained below.

When analysis information is added to the raw data, we want to preserve the original
information wherever possible (especially in the light of the incremental rhetorical parsing
we are developing; see below). Thus, all information used in the analysis process is stored
in the corpus in a persistent fashion.

4.3.2. Meta-data

The possibility to trace partial analyses of documents is valuable, especially in large corpora.
For example, when a manually annotated rhetorical relation is to be clarified later, there
should be a way to identify the annotator. Similarly, documents may get corrupted due to
bugs in an annotation tool. Obviously, a source identifier is needed.

We define a rather simple <info> tag, giving source information for documents and
annotator information for analyses.

<analysis id="maz3379.a.1" scheme="interpretation">

<info >

<editor job="annotate" date="18.02.02">

Antje Sauermann

</editor >

<editor job="revised" date="20.09.02">

David Reitter

<note >revised result/cause

nuclearity

</note >

</editor >

</info >

...

4.3.3. Representing tree structure in XML

One crucial decision in syntax design was whether annotations should be coded as on-the-
spot markup within the text or as relation nodes with referential indices. The first is easy
to read (analogous to the one used in a LISP-style format in Carlson et al. (2001)). For
example:

2The complete document type defintion (DTD) for URML is available from our web site, http://www.

ling.uni-potsdam.de/cl/rst/
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<concession >

<satellite >Admittedly , ... </satellite >

<nucleus >

<contrast >

<nucleus >However , some ... </nucleus >

<nucleus >others ... </nucleus >

</contrast >

</nucleus >

</concession >

This format demands a fully specified, unambiguous single tree structure and encodes
the underlying relation set in the document grammar (DTD). In XML, this may be desir-
able when generic editors are used, because they restrict annotators to comply with the
DTD, thus with theoretic claims. All processing modules, however, are also determined
to follow the fixed syntax. Changes in theoretic assumptions, such as the introduction of
discontinuous constituents or several rhetorical analysis layers, inevitably lead to a chain of
modifications in the system, even if the changes concern only concern one analysis layer.

Therefore, in our format every node of a discourse tree represents one relation: either a
hypotactic one (one nucleus, one satellite) or a paratactic one (several nuclei). Nodes are
indexed and reference each other to express references to the according text spans. In the
following example, the IDs 1, 2, 3 refer to minimal discourse units (cf. Section 4.3.8).

<hypRelation type="concession" id="10">

<satellite id="1" />

<nucleus id="11" />

</hypRelation >

<parRelation type="contrast" id="11">

<nucleus id="2" />

<nucleus id="3" />

</parRelation >

This referential markup syntax is flexible by design. It provides an elegant way to under-
specify annotations by leaving out tree nodes or by stating possible disjunctive alternatives
as sets of nodes. Also, scores may be mentioned for a node to indicate a preference or the
result of some heuristics.

Paratactic and hypotactic relations are represented in the same way, and there are no
additional span types. In contrast to the RSTTool format, our URML format is not aimed
at presenting and manipulating RST diagrams. Rather, we wish to store rhetorically anno-
tated data, potentially underspecified, in a manner that is independent from a particular
application and readable for both humans and machines.

In contrast to semantics-based representations (Schilder, 2002), URML refers to textual
data. It implicitly states linear precedence. Tree nodes in an analysis state immediate
dominance; underspecified dominance situations have to be explicitly stated with concurrent
tree nodes. This keeps annotations simple enough to work with them both manually and
automatically.

4.3.4. Underspecification

Consider the sample text shown in Figure 4.1. What is its primary discourse intention,
and what structure should be ascribed? Annotators may disagree. For example, 7D may be
rightly characterized as being in temporal sequence with span [7B,7C], but it could also seen
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Sequence

	

Elaboration

7A
Sequence

R

Concession

7B 7C

7D

Contrast

R

Cause

7E 7F

7G

7H

[Yesterday, the delegates chose their new representative.]7A [Even though Smith received only
24 votes,]7B [he accepted the election with a short speech.]7C [Then the assembly applauded
for three minutes.]7D [Due to the upcoming caucus meeting,]7E [the subsequent discussion was
very short.]7F [ Nonetheless the most pressing questions could be resolved.]7G [The meeting was
closed at 7pm.]7H

Figure 4.1.: A text analysis within Rhetorical Structure Theory. It is one of the interpre-
tations that can be derived from the underspecified URML representation in
Section 4.3.8.

as in sequence with only 7C, and 7B is a concession to span [7C,7D]. Automated analysis
tools might only give a partial answer here. Also, they might not be able to infer the
Elaboration relation between 7A and the subsequent segments. In particular, automatic
analysis will often encounter problems to locate the precise boundaries of larger segments:
Where does the just-mentioned Elaboration end? Also, nonetheless at the beginning of
7G signals a Contrast or Concession, but based solely on surface cues, it is by no means
clear how far to the left the first span stretches, i.e., what the exact scope of the nonetheless
is.

We face two different kinds of ambiguities. Depending on the rhetorical bias of those
annotating a corpus, they may decide that a single primary discourse intention cannot be
established (cf. section 2.5.1). The other type of ambiguity may arise in a step-by-step
annotation architecture, where certain decisions about a relation simply have not been
taken yet.

Uncertainties related to the kind of relation can be represented by simply leaving out
relation information — see Section 4.3.8. For instance, if the specific relation between two
spans is unknown, the relation tag can omit the type attribute (node12). If, however, the
class of a relation (hypotactic or paratactic) is known, a hypRelation or parRelation tag
should be used. If a span is known to be an argument of a relation, but its role is unknown,
it should be labeled element instead of satellite or nucleus (nodes 1E, 1F).

Each relation statement refers to its direct descendants in the tree via the identifier of
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the relation. We could, alternatively, refer to spans by their left and right borders in the
sequence of minimal discourse units. This way, ambiguous analysis would share common
nodes high up in the tree. However, it would discard our assumption that the score assigned
to those nodes relates to their descendants. In the example, the score given to the Cause
relation might be lower because the connective then in segment 7D usually indicates a
Sequence relation.

The set of relations implements what is known in chart parsing systems as subtree sharing :
We do not represent each tree derivation separately, but several analyses may share sub-
trees. This happens when two or more relations refer to the same relation as their nucleus
or satellite (node10a and node10b). Another technique allows structure-sharing of nodes
that are the same, but have different subtrees (local ambiguity packing). To do this, we
introduce an attribute group which defines a common name for two or more relations. The
score attribute also makes disjunction explicit, which would otherwise be implicit. Node11
summarizes three subtrees (with node10a, node10b, node10c). While this saves space, local
ambiguity packing is limited to those cases where the unified node contains exactly the same
data. This applies to the score given to node14 which might depend on the (ambiguous)
structure of its content. If so, local ambiguity packing should not be used by the client
application.3

4.3.5. Interpreting relation sets

Turning now to automatic tools for structural analysis, we encounter three paradigms to
understand sets of relations, which correspond to different phases of analysis. The first is the
parse forest scheme, where concurrent partial analyses are present. The parse forest holds
relations already processed. They may be annotated with a score (Section 4.3.8, node10a and
node10b). We indicate the scheme in the <analysis> element with a status= "forest"
attribute. Different stages of discourse analysis will modify existing relation scores and add
new relations. At this phase of analysis, a missing relation in the URML document indicates
that this relation has not been considered yet. If it was considered, it should be included,
possibly with a score="0" attribute. If the process is finished, pruning may occur and
low-scoring relations may be removed from the relation set. This changes the semantics of
the parse forest: relations that don’t exist in the forest are assumed not to hold. To indicate
this, we simply note it with a status ="forest-complete" attribute.

The third way to see a set of relations is the interpretation scheme. In this case, the
analysis algorithm has singled out (and, possibly, scored) a whole, well-formed derivation
for a document. We indicate this in the status="interpretation" attribute of the analysis.
Several analyses may be given for a document. These reflect different primary discourse
intentions as anticipated by an automated tool. The same mechanism is used by human
annotators, as blind cross-validation asks for documents to be analyzed twice. Human
annotators will most likely produce only the interpretation type of analyses.

As shown, the forest scheme assigns scores to each relation, while the second scheme
assigns them to each analysis. This happens on grounds of the locality of classification
decisions. In bottum-up style algorithms, the partial analyses are preselected only according
to local constraints, i.e. constraints that refer to data covered by the local text spans. For

3We would like to thank Silvan Heintze for his helpful comments.
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example, the rhetorical relation List might be proposed to hold between the segments B
and C, because of a comma found at the right border of B and the connective and found
at the left border of C. At a later stage in processing, the analysis algorithm might find
that B, C elaborate on A, which ends with the words “is highly contradictory” and a colon.
It may revise its earlier decision and find that a Contrast relation holds between B, C,
because of the Elaboration relation and the cue phrase to be found. These properties are
non-local.

The three-scheme layout shown here does not restrict analysis algorithms to work decre-
mentally, reducing search-space tool by tool. They can, alternatively, add anticipated re-
lations. These tools would be expected to add their own <analysis> to the document,
copying and extending the original <info> tag to preserve meta-data.

4.3.6. Specializing the DTD

The proposed document type definition (DTD) is open: We see it as a base class that may
be extended. Therefore, unknown tags should be ignored by applications. A specialized
DTD, derived from the base DTD proposed, should not alter original grammar productions,
but it may add others and extend existing ones. It may also allow new optional tags within
existing tags, and it may add optional attributes to existing tags.4 This way, data can be
exchanged between applications.

We have used a derived DTD which provides optional part-of-speech information for each
token of a text and includes results from a stemming algorithm. Other extensions could,
e.g., designate boundaries of topic chains or disambiguate discourse markers. While the
following section shows an example URML document that conforms to the base DTD, an
example document containing meta-data and part-of-speech tags can be found in Appendix
B.

4.3.7. The URML document type defintion

<!-- DTD for Underspecified Rhethorical Structure Trees -->

<!-- Version 0.5 Jan05 2002 - Reitter - reitter@mle.media.mit.edu -->

<!ENTITY markup "((# PCDATA)*)">

<!ELEMENT urml (header , document *)>

<!ENTITY % reltype "(par|hyp)">

<!ELEMENT header (reltypes , postypes ?)>

<!ELEMENT reltypes (rel)*>

<!ELEMENT rel EMPTY >

<!ATTLIST rel

name CDATA #REQUIRED

type %reltype; #REQUIRED >

<!ELEMENT postypes (pos*)>

<!ELEMENT pos EMPTY >

4Schema for Object-Oriented XML is a proposal for an extension to XML. However, common XML/DOM
libraries do not support this specification.
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<!ATTLIST pos

name CDATA #REQUIRED >

<!ELEMENT document (info?,text ,analysis +)*>

<!ATTLIST document

id ID #IMPLIED

lang CDATA #IMPLIED >

<!-- language follows the iso639 stanard: en , de , fr , es etc. -->

<!ELEMENT info ( source?, editor*, note?)>

<!ELEMENT source ANY > <!-- Source of the doc/analysis -->

<!ELEMENT editor (# PCDATA)> <!-- Who inserted the doc , created the analysis

? -->

<!ATTLIST editor

job CDATA #REQUIRED

date CDATA #IMPLIED >

<!ELEMENT note ANY > <!-- Any additional notes -->

<!ELEMENT text ( segment|unsegmented|ignore)*> <!-- The text of a document

-->

<!ELEMENT ignore (# PCDATA)> <!-- Data decided to be unimportant -->

<!ELEMENT segment (# PCDATA|p)*> <!-- A minimal unit of discourse -->

<!ATTLIST segment

id ID #REQUIRED >

<!ELEMENT unsegmented (# PCDATA|p)*> <!-- Text that has not been segmented

yet -->

<!ELEMENT br EMPTY >

<!-- paragraph delimiter - refers to layout

-->

<!-- a distinct analysis of the text. -->

<!ELEMENT analysis (info?, ( hypRelation|parRelation|relation|span)*)>

<!ATTLIST analysis

status CDATA #IMPLIED

id ID #IMPLIED

score CDATA #IMPLIED

>

<!-- paratactic (multi -nuclear) relation -->

<!ELEMENT parRelation (( nucleus|element)*)>

<!ATTLIST parRelation

type CDATA #REQUIRED

id ID #REQUIRED

score CDATA #IMPLIED

>

<!-- if type is unspecified: unknown paratactic relation -->

<!-- hypotactic (nucleus -satellite) relation -->

<!ELEMENT hypRelation ((( satellite|element),(nucleus|element))|(( nucleus|

27



4. URML: An Underspecified Representation of Rhetorical Analyses

element),(satellite|element)))>

<!ATTLIST hypRelation

type CDATA #IMPLIED

id ID #REQUIRED

score CDATA #IMPLIED

>

<!-- if type is unspecified: unknown hypotactic relation -->

<!ELEMENT relation ((( satellite|element) ,(nucleus|element))|(( nucleus|

element),(satellite|element))|(( nucleus|element)*))>

<!ATTLIST relation

type CDATA #IMPLIED

id ID #REQUIRED

score CDATA #IMPLIED

>

<!-- if type is unspecified: unknown relation -->

<!-- satellite role -->

<!ELEMENT satellite EMPTY >

<!ATTLIST satellite

id IDREF #REQUIRED > <!-- IDREF -->

<!-- nucleus role -->

<!ELEMENT nucleus EMPTY >

<!ATTLIST nucleus

id IDREF #REQUIRED > <!-- IDREF -->

<!-- unknown element role -->

<!ELEMENT element EMPTY >

<!ATTLIST element

id IDREF #REQUIRED > <!-- IDREF -->

<!-- If a satellite or nucleus consists of more than a single relation ,

the group of elements may be assigned an ID to be referenced using

the group attribute . -->

4.3.8. Example URML document

<?xml version="1.0" encoding="UTF -8"?>

<!DOCTYPE urml SYSTEM "urml.dtd">

<urml >

<header >

<reltypes >

<rel name="Cause" type="hyp"/>

<rel name="Circumstance" type="hyp"/>

<rel name="Concession" type="hyp"/>

<rel name="Condition" type="hyp"/>

<rel name="Contrast" type="par"/>

<rel name="Elaboration" type="hyp"/>

<rel name="Joint" type="par"/>

<rel name="List" type="par"/>

<rel name="Means" type="hyp"/>

<rel name="Purpose" type="hyp"/>

<rel name="Result" type="par"/>

<rel name="Sequence" type="par"/>

</reltypes >
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</header >

<document id="sample001">

<text >

<segment id="7A">Yesterday, the delegates chose their new representative.</segment >

<segment id="7B">Even though Smith received only 24 votes,</segment >

<segment id="7C">he accepted the election with a short speech.</segment >

<segment id="7D">Then the assembly applauded for three minutes.</segment >

<segment id="7E">Due to the upcoming caucus meeting,</segment >

<segment id="7F">the subsequent discussion was very short.</segment >

<segment id="7G">Nonetheless the most pressing questions could be

resolved.</segment >

<segment id="7H">The meeting was closed at 7pm. <P /> </segment >

</text >

<analysis status="forest -complete">

<hypRelation id="node9a" type="Concession">

<satellite id="7B"/>

<nucleus id="7C"/>

</hypRelation >

<parRelation id="node9b" type="Sequence">

<nucleus id="7C"/>

<nucleus id="7D"/>

</hypRelation >

<hypRelation id="node10a" group="node10" type="Cause" score=".3">

<satellite id="node9a"/>

<nucleus id="7D"/>

</hypRelation >

<parRelation id="node10b" group="node10" type="Sequence" score=".6">

<nucleus id="node9a"/>

<nucleus id="7D"/>

</hypRelation >

<hypRelation id="node10c" group="node10" type="Concession" score=".1">

<satellite id="7B"/>

<nucleus id="node9b"/>

</hypRelation >

<hypRelation id="node11" type="Elaboration" score=".4">

<nucleus id="7A"/>

<satellite id="node10"/>

</hypRelation >

<relation id="node12">

<element id="7E"/>

<element id="7F"/>

</relation >

<parRelation id="node13" type="Contrast">

<nucleus id="node12"/>

<nucleus id="7G"/>r

</parRelation >

<parRelation id="node14" type="Sequence">

<nucleus id="node11"/>

<nucleus id="node13"/>

<nucleus id="7H"/>

</parRelation >

</analysis >

</document ></urml >
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4.4. Applications

4.4.1. Building tools with XML/DOM

We use the data format to incrementally annotate data using various tools. The XML-
based format serves as common interface between the tools. This interface standardization
facilitates the implementation of a layer-based processing model. Each layer may be assigned
to different machine or human annotators.

The Document Object Model (DOM) defines an application programmers interface to
access a tree-structure of the document, created by an off-the-shelf XML parser. This al-
lows fairly easy access to the data. In the development of annotation tools it has proven
advantageous to use the DOM data in debugging. If corpus-related data is stored in the
DOM in readable form, it may be visualized easily through a generic formating routine at
any point during a system run. This is superior to state-of-the-art (C++) debuggers, which
hardly ever display the content of complex data structures properly. As the XML data
is always available in serialized form to be stored on hard-disk, turn-around times (com-
pile&test) are reduced greatly, as only one module needs to be tested at a time. However,
we recommend that simple tools that access only partial content, such as tokenizers and
POS taggers, be implemented with simple methods. Ours operate on the raw XML file with
regular expressions.

4.4.2. Annotating the Potsdam Corpus in URML

The format described has evolved from a practical application. We collected a corpus of
newspaper texts and performed manual RST annotation (see Chapter 3).

Two annotators worked through 173 texts. Data was converted from the annotation
application format to URML, part-of-speech-tagged and segmentized with Perl tools. These
access external tokenization and tagging applications.

4.4.3. Editing and visualization

Thanks to the XML architecture, the URML-based corpus can be inspected and manually
edited with one of numerous XML browsers and editors available. For the purpose of
visualization, we provide a package for LATEX(see Chapter C). Rhetorical analyses and their
corresponding document text can be extracted from the URML data and converted to the
appropriate format.

4.4.4. Conversion of the LDC discourse treebank

We also converted the LDC discourse treebank, a corpus of rhetorical annotations (Carlson
et al., 2001) to our format. The RST annotated collection of 385 English language newspaper
articles presented by Carlson et al. (2001) is the most extensive RST corpus. It contains
almost 21,800 minimal discourse units in documents of varying sizes.
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4.5. Conclusion

We have shown an underspecification method for rhetorical structure and introduced an
XML-based corpus format. The format has already proven to be useful in corpus collec-
tion efforts, in a pipeline-based rhetorical parser, and in the implementation of a machine-
learning analysis algorithm. We would like to see it as proposal towards a standardization
of corpus representation and for tool building in rhetorical analysis.
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5.1. Introduction

In this chapter, bits and pieces described before are brought together. I describe how various
aspects of rhetorical structure can be determined using a set of classifiers. These classifiers
are trained using resources such as the one described in Chapter 3.

Rhetorical analysis is an incremental process: a chain of operations is applied to the data.
In between these steps, we make heavy use of the underspecified representation discussed
in Chapter 4.

In the following section, I describe different approaches to rhetorical analysis, and, in
detail, our novel data-intensive classification-based method. It consists of a series of trans-
formations that allow the use of statistical classifiers in a chart-parsing algorithm (section
5.3). We use support vector machines as classifiers (section 5.4).

5.2. Previous work

The following overview of parsing approaches is not meant to be exhausting. Instead, we
present a few approaches to statistical parsing of syntax and of rhetorical structure that
we deemed relevant to our RST parsing approach. Also, I will discuss lexical chaining
techniques, which analyze the topic structure of text. I will first give a comparison of
syntactic and rhetorical parsing in general.

5.2.1. Syntactic and rhetorical parsing unified

Where do syntactic and rhetorical parsing intersect? In both instances of parsing, we try to
construct a (possibly partially specified) tree structure from a sequence of terminal symbols.
The tree structure is constrained by rich information attached to the terminal symbols; in
syntactic parsing, it is morphologic and lexical semantic information. In our case, it is a set
of feature-value pairs for rhetorical features on lexical level, including the occurrence of cue
phrases or punctuation. In syntactic parsing, some form of grammar is used: in the case of
phrase structure grammars, parsing often relies on a manually defined rule set. These rules
license each node in the tree depending on its daughter nodes:

DP --> DET NBAR ⇒ DP
��� HHH

DET

every

NBAR

dog
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Phrase-structure rules may define linear precedence (in a DP, the DET may precede the
NBAR), as shown in the example. In rhetorical parsing, the ordering is, as we may suspect,
sometimes a useful restriction in rhetorical parsing. This is illustrated in Figure 5.2.1.

Figure 5.2.1 shows a marked analysis. The discourse marker but cannot enforce a Con-
cession relation from its relation-initial position. We can explain this with a strong ordering
contraint for the phrase marker but, which forces the nucleus to follow the satellite.

What, if but was replaced by another discourse marker? We can then construct the inverse
ordering in a single sentence (Figure 5.2.1).

Data from the Potsdam Corpus suggests an ordering preference, but no hard constraint.
There are 125 Concessions in the corpus. In 91 of them, the satellite precedes the nucleus.
In 34 cases, the nucleus is in initial position. A good explanation for this can probably
be found on a more abstract level. The ordering preference could be formulated as a
Theme<<Rheme constraint.

As a consequence, ordering reflects preference criteria. As such, it cannot be used as a
hard constraint as in phrase structure rules, but as a feature influencing statistics.

Phrase-structure rules also license an immediate dominance relationship (a DP consists
of a DET and an NBAR). In rhetorical structure, this would mean that, for example, texts
are unlikely to elaborate (Elaboration) on a fact presented with a Concession relation.

Head-driven syntactic theories (Gazdar et al., 1985; Pollard & Sag, 1994) are based on
the percolation of partial features in one designated daughter of a parent node (the head-
daughter) to the parent node. Similarly, Marcu (1996) proposes a rule governing all rhetor-
ical relations:

A relation between two Spans A,B only holds if that relation holds between the
nuclei of A and B respectively.

Thus, information of one designated daughter (the nucleus) percolates upwards in the tree.
Syntactic parsers that perform unification could be applied to rhetorical parsing. However,
even when unification is learned and not based on manually defined rules, common parsing
algorithms are still based on compositionality for efficiency reasons.

Compositionality : the meaning of a complex is wholly determined by its struc-
ture and the meanings of its parts. (Frege, 1892)

In our case, the rhetorical relation and some salient information that holds between a set
of segments can solely and unambiguously be determined from these segments. Mann &
Thompson (1988) do not refer to any conditions outside of the segments that are connected
by the relation being defined. However, we need to define the properties of salient infor-
mation. Marcu (1999) provides a mechanism to represent this text by adding a promotion
property to each node. It contains the union of the promotion values of all salient children,
on unit level, the unit itself.

Can compositionality be applied to rhetorical analysis? As already mentioned in 2.5.1,
RST based manual analyses do not solely mirror this purely rhetorical perspective. Humans
assume an intentional viewpoint of rhetorical relationships. As Moore & Pollack (1992)
point out, the intentional and rhetorical analyses of a text are not necessarily isomorphic.
They give the following example:
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R

Concession

The Chancellor
did not succeed
in lowering un-
employment.

	

Elaboration

But Schröder promised to
enforce better employment
policies.

His secretary of econ-
omy plans to reduce re-
strictions on lay-offs.

Figure 5.1.: Linear precedence in RST: acceptable analysis versus...

#
	

Concession

	

Elaboration

But Schröder promised to
enforce better employment
policies.

His secretary of econ-
omy plans to reduce re-
strictions on lay-offs.

The Chancellor
did not succeed
in lowering un-
employment.

Figure 5.2.: ... an unacceptable RST analysis.
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Concession

Schröder sticks to his promise
to enforce better employment
policies

despite his poor track
record in terms of em-
ployment statistics.

Figure 5.3.: Inverse ordering in a Concession

[Come home by 5:00.]8A [Then we can go to the hardware store before it closes.]8B [That way
we can finish the bookshelves tonight.]8C

Among the four different discourse trees possible (Marcu, 1999) are the following:

R

Condition

R

Condition

8A 8B

8C
R

Motivation

8A
	

Motivation

8B 8C

To disambiguate the set of analyses and pick the right one, knowledge (or clues) about
intentions is needed. This is not necessarily apparent from the text connected by the
relation, however, it is sometimes available in the context. This applies especially to meta-
statements by the authors (I am going to prove, that, or A summary will conclude the
article.). Since they are usually given before the statements are made that they refer to,
this opens up a vage similiarity to syntactic parsing systems that look to the analysis done
with the left context of a given symbol in order to disambiguate it. A counter-argument
in favor of a compositional view would be to dismiss contextual rhetorical information as
purely semantic data.

Another argument against the compositionality of rhetorical analysis trees is coreference:
referential expressions in a child node can be bound by a concept introduced in tree leaves
that are not sisters to the node. They are only positionally constrained by syntax and
processing performance. Stylistically well-written texts have a high degree of cohesion (and
thus, coreference).

5.2.2. Statistical parsing: a syntactic multi-stage parser

Adwait Ratnaparkhi demonstrates a method of syntactic parsing using Maximum Entropy
models in his PhD thesis (Ratnaparkhi, 1998). The parsing system is trained using a set
of structurally annotated sentences. There is no explicit grammar; instead, the grammar is
encoded in the language models that result from training.

Ratnaparkhi sees parsing a sequence of classification decisions. Each decision has an effect
on the current state of the analysis. The classifiers use local information from the current
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analysis to determine the next action. I describe his algorithm as an example for parsing
with classifiers.

Parsing takes place in three stages. During the first parse, a statistical tagging algorithm
assigns a part-of-speech tag such as noun, finite verb or adjective to each word of the input.

The second parse is meant to find phrases consisting solely of terminal nodes (i.e. words),
which are called chunks. In this stage, the chunking classifier has three choices. To each
word, it can assign on of three categories. “Start” would mark the left border of a chunk.
All subsequent words of this junk will be tagged “Join”. Words that do not belong to any
category are marked “Other”.

The third parse can be seen as the main part of syntactic parsing. In contrast to the
first two steps, this stage always operates on the leftmost unfinished constituent and the
following word in the analysis. In general, each existing constituent is annotated with either
“Start X” (X being the label of a phrase, suche as VP oder NP), “Join X”. Similar to
step two, “Start X” marks the left border of a constituent, while “Join X” labels all other
(direct) daughters of a constituent. These annotations are made by two processes, Build
and Check.

Build always examines the leftmost constituent that is not yet annotated. It decides,
whether this constituent should be in adjoined position to the unfinished constituent to its
left ( “Join X”) or begin a new constituent on its own ( “Start X”). As an example, consider
the following partial analysis.

(Start VP)
VBD

spotted

(Start NP)
DET

the

N’
�� HH

ADJ

cute

N

girl

PREP

at

NP
�� HH

DET

the

N

bar

At this point, chunking has already identified the two DET-N and ADJ-N phrases. Also,
the first two words have been labeled “Start VP” and “Start NP”. Build will now consider
the leftmost constituent that is not annotated with “Start” or “Join”, which is “N’ ”. It
takes into account surrounding clues will be discuss later on. It decides to adjoin N’ to the
NP constituent by labeling it “Join NP”

(Start VP)
VBD

spotted

(Start NP)
DET

the

(Join NP)
N’

�� HH
ADJ

cute

N

girl

PREP

at

NP
�� HH

DET

the

N

bar

After each Build decision, Check is invoked. This process determines, whether the se-
quence between the rightmost “Start X” label and the constituent just looked at by Build
is complete and should be reduced. If it decides so, all of these subtrees are combined into
an X node (here, X is NP) and our derivation looks like this:
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(Start VP)
VBD

spotted

NP

�
��

H
HH

DET

the

N’
�� HH

ADJ

cute

N

girl

PREP

at

NP
�� HH

DET

the

N

bar

If Check decides not to reduce, the derivation is not changed. Next, Build is invoked again.
As we recall, it operates on the rightmost unlabeled constituent, which is the nominal phrase
(NP) “the cute girl”. Check decides to adjoin it to the verb, building a VP. Check then
decides whether to reduce or to go on, possibly shifting the PP.

Contextual features In order to make a decision, Build and Check use contextual infor-
mation available at the time the decision is made. For each element in a 5-element window
surrounding the constituent that is to be labeled, Build checks the head word, constituent
label and, if any, “Start”/ “Join” annotation. It also checks for matching brackets, comm-
mas or dots.

In order to decide whether a constituent is complete, Check looks at the direct descen-
dants and checks their head word, the constituent labels. It also takes the label of the
proposed constituent into account.

The information described is combined according to predefined templates. The Build
and Check procedures will look at one, two or three constituents at once and combine the
complex information derived from them to form several simple, binary features. Such a
feature has a positive value, if and only if all the conditions are met in a given situation.
Ratnaparkhi uses templates that are instantiated during training. One such template is
cons(0), which incorporates information about head word, label and annotation of the
current constituent. Consider the following example:

(Start VP)

VBD

spotted

(Start NP)

DET

the

N’
�� HH

ADJ

cute

N

girl

PREP

at

NP
�� HH

DET

the

N

bar

Build(N’) instantiates the above context template cons(0) as follows:
headword: girl
label: N
annotation: (unknown)

This combination of values constitutes a distinct feature,which is a binary function. It eval-
uates to true if and only if presented with the above data. Extended forms of the template
exist combining information from two or three constituents, which are selected using their
relative position. cons(0,-1,-2) refers to the following data.

headword1: girl
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label1: N’
annotation1: (unknown)
headword2: the
label2: DET
annotation2: Start NP
headword3: spotted
label3: VBD
annotation3: Start VP

Considered that this template contains open-class words in its head entry, it will generate
a huge amount of irrelevant features. These are filtered (by frequency) in the next step. A
decomposition of the features during filtering is not included. This could unify two distinct
features with different headword1 entries to form a single, more relevant feature.

Ratnaparkhi’s templates are equivalent to our hard-coded feature classes (section 5.3.3).

Scoring parse trees Ratnaparkhi defines a score function for a parse tree in order to
compare analyses. His score is the product of all actions at the different parsing stages
(Tag, Chunk, Build, Check) involved in a particular derivation.

To find the best analysis, Ratnaparkhi applies a Top-K Breadth-first search heuristic.
(For each action, the best K next steps are recorded at the end of queue. The queue is
traversed from first to last, each action producing the next possible step.

5.2.3. Rhetorical parsing

Several works deal with the aspects of rhetorical parsing based on surface cues. Sanders &
van Wijk (1996) discuss a general parsing architecture. It works incrementally and decides,
for each new text segment, about attachment, relation type and relation (in this order).

The first-order formalization of RST developed in Marcu (1996) constrains possible tree
analyses in most of Daniel Marcu’s approaches. A more accurate choice of rhetorical rela-
tions is made by diambiguating potential cue phrases in their sentential vs. non-sentential
use; Marcu (1997) uses regular expression pattern-matching to achieve this. Hereby, cue
phrases are identified with 80.8 percent recall, 89.5 percent precision. The actual parsing
then applies a heuristic that prefers right-branching nodes. As Corston-Oliver (1998c) notes,
this algorithm suffers from combinatorial explosion.

Rehm (1998, 1999) collects ideas and approaches to summarize texts using rhetorical
analyses. With a chain of tools, SGML markup is used to annotate texts. Schauer (2000a)
assumes the availability of binding accessibility information for referents and presents an
algorithm to integrate coreference and discourse structure.

Marcu (2000) discusses several other methods of parsing. He implements a learning
approach that automatically derives rules to assign relations. Also, he shows a shift/reduce
parser that uses the rules in a decision tree algorithm (trained with C4.5) to decide on its
actions. Features relate, among others, to cue phrases and the previous parsing steps. The
shift/reduce parser is computationally less expensive to the one shown below, but is not
able to integrate non-local features.

Marcu (2000) also shows an implementation of a parser that uses manually derived rules.
For each discourse marker, these rules state the distribution of nucleus and satellite (to the
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left or to the right hand side segment), the relations that can be signaled, the size of textual
unit. Relations are also hypothesized according to word cooccurrence. Rhetorical relations
are recognized with .47 recall, .78 precision.

In the following, I will describe two other rhetorical parsing approaches in detail. RASTA
uses knowledge about relations to reduce the search space. Marcu & Echihabi (2002) learn
classification decisions from a automatically collected corpus.

Parsing with a discourse marker lexicon: RASTA

The Rhetorical Structure Theory Analyzer (Corston-Oliver, 1998c, RASTA) identifies rhetor-
ical relations in text. Not unlike other approaches, it looks at various clues from syntactic
and partial semantic analyses.

Deep syntactic analysis is used to eliminate ambiguities, where the discourse function of
a phrase depends on its syntactic position. E.g., the phrase as long as is only interpreted as
rhetorical clue, if a full sentence follows. RASTA distinguishes necessary and contributing
criteria for a discourse relation. A selection of the necessary criteria for the Sequence
relation:1

• Clause1 precedes Clause2.

• Clause1 is not syntacticly subordinate to Clause2.

• Clause2 is not syntacticly subordinate to Clause1.

• The subject of Clause1 is not a demonstrative pronoun, nor is it modified by a demon-
strative.

• If either Clause1 nor [sic] Clause2 has negative polarity, then it must also have an
explicit indication of time.

• Clause2 must not be immediately governed by a Contrast conjunction.

RASTA calculates a heuristic score for a relation and a given pair of spans. This score
depends on the individual scores for the contributing clues, which where set manually or
learned during regression tests. This score is used to prioritize any following action: Highest
ranking relation choices are applied first. Essentially, this follows the principle of local
optimization used in a best-K algorithm.

It is not clear how the heuristic scores are exactly learned, and how they are combined.
Since heuristics, which are analogous to the features of our approach, are highly interde-
pendent, a non-linear classifier is needed, which is not the case. Corston-Oliver (1998a)
notes that machine learning could not improve the performance of RASTA, judged from
“preliminary statistical analysis”. The reasoning behind this remains unclear. The view can
be supported, however, with the argument that extensive manual tuning has been applied
to the necessary/contributing criteria for relations.

RASTA detects a comparatively small set of only 13 relations, as a smaller set improves re-
liability (it makes the task easier). The relations are AsymmetricContrast, Cause, Cir-
cumstance, Concession, Condition, Contrast, Elaboration, Joint, List, Means,
Purpose, Result and Sequence.

1Taken from Corston-Oliver (1998c). Emphasis not in the original.

39



5. Rhetorical Analysis

CONTRAST (3.8 Mio examples)
[BOS ... EOS] [BOS But ... EOS]
[BOS ...] [but ... EOS]
[BOS ... ] [although ... EOS]
[BOS Although ... ,] [ ... EOS]
CAUSE-EXPLANATION-EVIDENCE (0.9 Mio examples)
[BOS ... ] [because ... EOS]
[BOS Because ... ,] [ ... EOS]
[BOS ... EOS] [BOS Thus, ... EOS]
CONDITION (1.2 Mio examples)
[BOS If ... ,] [ ... EOS]
[BOS If ... ] [then ... EOS]
[BOS ... ] [if ... EOS]
ELABORATION (1.8 Mio examples)
[BOS ... EOS] [BOS ... for example ... EOS]
[BOS ... ] [which ... ,]

Figure 5.4.: Marcu and Echihabi’s text span extraction patterns, cited after Marcu & Echi-
habi (2002), numbers simplified.

Corston-Oliver, the thesis leaves us under-informed about the actual performance of
RASTA. Quantitative evaluation would be needed, if we were to compare it to other ana-
lyzers.

Similar to the relation-specific rules RASTA works with, cue phrases can be disambiguated
with a rule-like solution. They are syntacticly and semantically described with a set of
attribute/value pairs (Knott & Dale, 1994; Stede & Umbach, 1998; Berger et al., 2002).
The machine learning road we take is a different one: we detect cue phrases and their
syntactic context independently as separate features. There are no hard constraints. All
disambiguation takes place in the language model.

Marcu und Echihabi’s unsupervised classification approach

Marcu & Echihabi (2002) investigate unsupervised learning of classification decisions. Large
quantities of sentences are extracted automatically by applying search patterns to corpora.
(See Figure 5.2.3 for a list.) Pairs of text spans containing cue phrases are extracted and
labeled with one of six relations. With this method, a high number of annotated samples
may be collected and used as learning material.

Marcu & Echihabi (2002) use a very straightforward learning method: check as features
word pairs (wi, wj) and calculate a maximum likelihood probability P (r|Wi,Wj). During
classification, Bayesian statistics are used to find the most probable relation. Before training,
the cue phrases that triggered the extraction of the training set sentences are removed to
prevent the classifier from learning the cue phrases.

With their system, this approach achieves a major improvement of data separation. Out
of 238 Contrast relations between adjacent spans of text in the RST-annotated corpus of
Carlson et al. (2001), 177 are not signaled by a cue phrase. The classifier presented can tell
123 of these from being Elaborations. Together with the signaled Contrast relations,
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this results in an accuracy of .77. Contrast and Cause-Explanation-Evidence are
separated with an accuracy of .87.

The learning curve for these classifiers does not level off within the range of sample
quantities tested. For both corpora used (BLIPP and RAW), around 100.000 training
samples are needed to achieve accuracy measures beyond .80 with the dichotomizer for
Elaboration vs. Cause-Explanation-Evidence.

The results show that statistical classification of a relation between two text spans is
feasible. The learning algorithm based on Bayesian statistics is fairly simple. The major
drawback of this approach seems to be that it can’t be applied to rhetorical relations for
which no unambiguous cue phrases are known. It is mainly for this reason that corpora are
still needed, if a broad number of relations is to be recognized.

5.2.4. Lexical chaining

A lexical chain is a sequence of words or lexicalized phrases that bear a common sense or
display some semantic similarity. Detecting these chains in a text means to identify regions
of topics in a text, where lexical cohesion is high.

Morris & Hirst (1991) show that lexical chains may serve as excellent clue to the structure
of topics and sub-topics in text.

The approaches to identify lexical chains are usually shallow and statistical. In most
cases, a variation of the following steps is employed.

1. Text is tokenized and segmented. Segmentation can be achieved by collecting a fixed
number of tokens (Hearst, 1994a).

2. A set of candidate words is selected from the tokens. To be eligible to take part in a
lexical chain, the word must belong to an open class.

3. The set of candidates can be expanded semantically. Usually, a thesaurus (WordNet,
EuroWordNet) is used. This step generates, for each token, synonyms of several senses.

4. Chains of words have contain semantically similar senses are built. Chain borders are
globally optimized. Brunn et al. (2001) use the preference criterion

wordrepetition >> synonym/antonym >> isa/include

(The latter relation refers to inference steps in the WordNet database.)

Chain boundaries may be interpreted as boundaries of text segments. Hearst (1994a);
Richmond et al. (1997) demonstrate this even without accessing a thesaurus. Litman &
Passonneau (1995) combine different types of features to detect discourse boundaries in
speech.

Why justifies the use of a lexical chaining measure in the analysis approach presented
here? It is the hypothesis that the boundaries of lexical chains match the boundaries
of the arguments of certain higher-level relations. For example, satellite and nucleus of
a Background or Enablement relation may contain different lexical chains, while an
Elaboration relation is likely to span over the same lexical chain.
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5.3. A machine learning approach to rhetorical analysis

We see parsing as a series of classification decisions. In this section, we describe the basis for
the parsing framework. In particular, this is the well-known data structure chart (section
5.3.1), a transformation process to prepare data for classification (sections 5.3.2, 5.3.3) and
an algorithm that actually performs parsing.

The core part of the parsing is certainly the actual binary classification. There are many
classification models that operate on the kind of data our transformation process produces.
Among them are decision-tree learning (Quinlan, 1993, C4.5) or classifiers based on the
maximum entropy principle. We will show one such method, support vector machines, in
the subsequent section.

5.3.1. Incremental construction of a chart

Statistical-based rhetorical parsing borrows some ideas from rule-based chart parsing. I
assume fundamental knowledge in parsing techniques. Generally, an incremental parser
attempts to integrate segments of input into the analysis drawn so far. At each step, the
parser needs to make a decision on what to do with a token that is read from the input. It
may either start a new constituent, i.e. in our case, it may be the left argument to a new
relation, or it may be integrated as new element in an existing relation. In the tradition of
chart parsing, we call complete and partially detected relations edges, and the set of edges
the chart. Formally:

C is a Chart←→ for each < i, r, β, n >∈ C :
r ∈ R,
β =< β1, β2, ..., βk >,
hypotactic(r)→ 1 ≤ n ≤ k,
∀βj ∈ β(∃r′∃β′∃n′(< βj , r

′, β′, n′ >∈ C)))

R is the set of known relations. Note that n assigns nuclearity for each edge and that β is
a list of references to its children.

During learning, the chart is generated directly from the relation nodes of a document.
Each edge corresponds to one relation node, terminal segments are inserted as edges without
nuclearity and relation assignment and without children.

During parsing, the chart is built up incrementally. Each minimal discourse unit is in-
serted in the chart (as edge with β = {} and used to start a new edge or to complete existing
adjacent edges. The decision about what to do with an edge, which relation to assign and
which daughter βi to designate as nucleus n is taking by a classifier.

The chart described here corresponds closely with the serialized data format introduced
in chapter 4. In fact, each edge as shown before translates to a <relation> or <segment>
tag and its contents.

To build up the chart, we need a classifier to tell us when all nodes belonging to a relation
are found (compare Ratnaparkhi’s Check procedure), and whether to attach a new node
to the constituent before or to start a new subtree (Build). How can such decisions be
drawn? The classifiers look at various linguistic properties (features) that occur in the text
spans that are possibly related. To be successful, they need to observe a pattern of features
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in the text spans — this pattern (feature vector) needs to be structurally same in all cases.
That means, the same features need to be observed in the texts.

We achieve this with an intermediate data structure, the classification instance. In the
following, the transformation is defined.2

5.3.2. Edges split up in classification instances

Classification instances are structurally constant units that allows classifiers to observe a
pattern of features. The challenge is that paratactic relations can connect any number of
nodes. Also, the nucleus and satellite elements of hypotactic relations can appear in two
different orders, but features such as cue words are usually tied to the nucleus or the satellite,
not to the first or second element of a relation.

We define a transformation function µ that assigns, for each edge, a set of classification
instances. A classification instance c :=< r, δ, g > holds a list of text spans δ and a single
span g. The role of δ and g differs in hypotactic and paratactic relations. For hypotactic
relations, which are assumed to be binary, δ contains the nucleus and g represents the
satellite. 3 For all r ∈ R, hypotactic(r):

µ(< i, r, β, 1 >) = {< r,< β1 >, β2 >}

µ(< i, r, β, 2 >) = {< r,< β2 >, β1 >}

For paratactic relations, our classifiers need to decide multiple times whether to attach
a newly encountered segment or not. To make a decision, the classifier needs to see all
the elements to the left, because a discourse signal could be contained anywhere in these
elements. Therefore, for all r ∈ R, paratactic(r):

µ(< i, r, β, 0 >) = {< r,< β1, β2, ..., βn >, βn+1 > |2 ≤ n < |β|}

As an example, we will consider the case: < 1,Contrast, < 2, 3, 4, 5 >>. This relation
node results in the following set of classification instances: {<Contrast, < 1 >, 2 >, <
Contrast,< 1, 2 >, 3 >, < Contrast,< 1, 2, 3 >, 4 >} .

If put in the right order, the classification instances describe a serialized view in a left-
to-right parse process. Again, this is what we want to do with the classification instances:
Whenever an attachment of a text span is structurally possible, the situation represents a
classification instance. We use present it to the classification algorithm to decide, whether
the subtree may be added to an existing subtree, and if so, which relation the subtree could
take on.

In our parsing framework, we only allow binary hypotactic relations. This is for efficiency
reasons. The formalism established can handle the schemas proposed in Mann & Thompson
(1988), where several hypotactic relations share one nucleus. The µ function (and with it
the parsing algorithm) can be extended tom cover hypotactic schemata with more than one
satellite by defining µ for hypotactic r in a similar fashion as we did for paratactic r.

Currently, the classification instances contain references to the full subtrees in β. Fol-
lowing Marcu’s compositionality criterion, we could restrict the view to only look at the

2For a definition of terms, refer to the reference Appendix A
3the linear precedence of the text spans will be encoded as feature
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promotion sets of the elements in β, which is, in general, the content of their nuclei. The
reason we don’t take the approach is that in this case, we would require a very reliable
identification of the promotion set. Otherwise, the error adds up. The algorithm shown
does not suffer from the this problem.

5.3.3. Transforming classification instances into feature vectors

Automatic annotation algorithms exist for many of the surface clues we will present here.
Some are very reliable, such as part-of-speech tagging, others depend on the availability
of large knowledge bases, such as topic chaining systems, which use ontologies, or syntac-
tic parsers, which rely on broad-coverage grammars and morpho-lexical information. The
concept of contribution renders the system robust: Even though some observations may be
misleading due to their high degree of ambiguity, the result may still be correct. Therefore,
it seems sensible to examine possible heuristics that could serve us in finding clues at signif-
icantly lower cost than a full analysis would take. The system uses heuristics that will not
(by nature) demonstrate perfect performance. They draw their advantages from an easy
and fast implementation, low resource usage and high coverage. To evaluate and improve
each heuristic, a randomly selected set of whole texts was manually annotated with the
intended features. Then, the performance of the algorithm was measured.

We call the cues observed to make that decisions features. A feature is a function F :
C → [−1, 1] (where C is the set of classification instances).

The features are determined before learning: General feature classes are hard-coded (as
described below), such as: There is a cue phrase in the left part of the relation. The actual
features are instantiations of these classes, which are collected from the corpus, such as:
The cue phrase ‘However,’ is found in the left part of the relation. This creates a finite
set of features. For each feature and each classification decision, we can observe a feature
value. For the example given before, possible feature values would be {+1,−1}. However,
non-discrete feature values are possible. The mapping from a feature to a feature value for
a certain classification instance is called feature vector.

We distinguish two types of features:

• Local features: These hold only information that is available within a classification
instance. These may comprise information about the presence of discourse markers,
of words with selected part-of-speech categories (conjunctions, Nouns etc.), the length
of the text segment. This feature class also includes the presence of certain child
relations (direct descendents). For example, this structural feature vector can also
contain information about the number of relations contained in the constituent(s) the
text represents.

• Non-local features: These features refer to contextual knowledge, such as: the type
of siblings the whole text span (both spans that the classification instance refers to),
to depth of embedding (length of the shortest path from the top-node in the tree to
the current relation) and concept-cooccurrence information from the lexical chaining
algorithm.

In the selection of heuristics, we try to avoid too specific definitions of the features. No
additional data sets were given to the learning algorithm. The learning algorithm was in

44



5. Rhetorical Analysis

charge of detecting useful features and discarding others. On the one hand, this made
the task harder, on the other hand, we do not risk forgetting features that show a hidden
contribution to the classification decisions.

Features were instantiated from templates as first step of the learning phase. In evaluation,
they were only acquired from the test set. I will now describe the feature templates used to
find the set of features.

Cue words and pronouns

The strongest clues consist of discourse markers, or connectives. However, they suffer from
their many-to-many relationship to rhetorical relations: they are highly ambiguous, and
relations may be signaled in different ways. We define a class of features Cuew,b,s(c) that
return a positional indicator for a cue word w within the first (b = 0) or second (b = 1) half
of the first(c) (s = 0) or second(c) (s = 1) span. For b = 2, it gives a binary indication of
whether the word occurs somewhere within the span, as some relations are marked using
combinations of lexical material: the city has issues so much supply recently, / that some
people are getting a little concerned.

Words that form cue phrases are automatically extracted from the Corpus according to
their part-of-speech. Apart from lexical items that overtly indicate rhetorical structure, the
choice of pronouns and articles (definite, indefinite, missing) is taken into consideration.
Table 5.1 shows the part-of-speech categories used to select potential connectives. The
part-of-speech annotation follows the Stuttgart-Tübingen Tagset (Schiller et al., 1995) (for
German) and the Enriched Tagset of the Brown National Corpus.

As discourse cues tend to be found at the beginning of a text span (“However,”, “Thus”)
or at its end (“, too” and punctuation), the relative position of a cue within the segment
considered is encoded in the feature value. For each cue, two features were added: one
denoting the occurrence of the cue in the first three words of the text span, the other
feature concerns the cue position in the last three words.

Why do we need to filter the words at all? Theoretically, we could simply add all known
words as features, since additional features should not slow down the learning process sig-
nificantly. However, taking all words that occur in the training corpus into account would
impede the transformation of classification instances into (then large) feature vectors. The
filters make sure, however, that recall is as high as possible. A good precision measure is
less important, since the reliability of each feature is calculated in the training phase of the
support vector model.

While this approach can certainly find cue words, its drawback is that it cannot find whole
cue phrases (on the one hand). The learning algorithm may use the words independently
and discover combinations on its own. As with all features detected, the decision about pre-
fabricated lists of cue phrases involves a trade-off between linguistic knowledge encoded in
feature detection and complexity of the learned part, which comes with a need for additional
training data. We additionally included a list of known cue phrases. For the German corpus,
a list of 685 cue phrases collected by Rehm (1998) is recognized; for English, we added 320
discourse markers collected by Knott (1996).

A further approach to detecting cue phrases would be an informed one: With the help of
a discourse marker lexicon cues could be disambiguated and included as features in form of
(fuzzy) sets of possible relations. Common approaches to discourse marker lexicons (Stede
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Table 5.1.: Part-of-speech categories used to filter potential cue words.

ART determiner der, die, ein
PPER personal pronoun er, sie
ADV adverb darum, aber, erstens
PDAT demonstrative pronoun dieses, jene
PDS demonstrative pronoun (noun phrase) das
PRELAT relative pronoun deren, dessen
PRELS relative pronoun (noun phrase) welcher, deren, dessen
PWAT interrogative pronoun welche
PWS interrogative pronoun (noun phrase) was
PWAV adverbial interrogative pronoun wann, worüber
PAV pronominal adverb trotzdem, deswegen, außerdem
KOUI subordinating conjunction (inf. verb) um (zu), anstatt (zu)
KOUS subordinating conjunction (sentence) dass, weil, obwohl, damit
KON co-ordinating conjunction entweder. . . oder, denn, doch
ITJ interjection ach, mhm, tja
PTKANT answer particle ja, nein
AT– article a, an
D– determiner this, that, a, the, another
CC Coordinating conjunction, general and, or
CCB Coordinating conjunction: but but
CS– Subordinating conjunction if, when, while, because,than
JJR General comparative adjective better, older
PNQ– Wh-pronoun who
RR General positive adverb often, long, easily, however
RRQ Wh- general adverb how, when, where, why
RRQV Wh-ever general adverb however, whenever, wherever
RT Nominal adverb of time tomorrow
XX negation particle not
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& Umbach, 1998; Berger et al., 2002) define sets of contraints (syntactic, semantic) which
refer to deep linguistic analysis — data unavailable to our algorithm.

Introduction of concepts

The way noun phrases occur is specific to discourse boundaries. In journalistic texts, definite
noun phrases with a common noun (NN, “the chancellor”, “das Restaurant”) tend to refer
to a concept that was introduced before. Indefinite noun phrases do not refer in a strict
semantic sense. The indefinite subject in 9B is used to begin an evaluation or a conclusion
of 9A.

[ Rund 15 grüne Bundestagsabgeordnete haben erhebliche Zweifel, ob sie der Bereitstellung von
Bundeswehrsoldaten für den Anti-Terror-Kampf zustimmen können. (...) ]9A [ Ein Kanzler, den
in einer solch existenziellen Frage die eigene Koalition im Stich lässt, muss sich neue Partner
suchen. ]9B (maz9725)

Proper nouns (NE) are usually introduced with an attributive common noun phrase:
“Bundeskanzler Schröder”, “World’s largest Unix vendor Apple”. Later, they are referred to
using common nouns or variations of proper nouns, but not using the introductory attributed
form.4

This distinction of introducting referents and referring noun phrases makes up for the fact
that a thesaurus is hardly complete, thus, proper dereferencing of noun phrases cannot be
achieved. The same argument supports the detection of determiners in noun phrases with
common nouns.

The detection of phrases is imlemented as regular expression matching. We detect the
sequence NN-NE (proper nouns with a noun attribute) toward the beginning of a sentence.
We also detect DDET-(ADJA—VVPP)*-NN, DDET being a definite determiner (in Ger-
man: {der, die, das}).

NounPhrasee(c) returns true if a regular expression e occurs within the first three words
of right(c).

Punctuation

In German and English, punctuation at the right segment border of the left segment of
a classification instance is an excellent cue. PUNCTp,b,s(c) returns true if punctuation p
occurs within the first (b = 0) or last (b = 1) ten characters of left(c) (s = 0) or right(c)
(s = 1).

Part-Of-Speech

The part-of-speech categories of the words at the borders of segments may help disambiguate
the type of relation (sentential). Hirschberg & Litman (1993) note that they contribute only
very little to the classification result. Our feature POSp,b,s(c) returns true if a word tagged

4Journalistically trained writers will employ a new (possibly shorter) introductory form, if the concept is
not as salient any more, i.e. if the noun phrase occurrs at greater distance from the last occurrence. This
knowledge is useful to determine the preferred size of the tree constituent it combines with.
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p occurs within the first (b = 0) or last (b = 1) three words of left(c) (s = 0) or right(c)
(s = 1).

Lexical similarity

Topic chaining has long been a popular property in discourse parsing (Hearst, 1997; Morris &
Hirst, 1991; Kurohashi & Nagao, 1994; Litman & Passonneau, 1995; Richmond et al., 1997).
Semantic similarity is measured by counting coocurrences of nouns, verbs and adjectives.
The system also counts small sequences containing up to k words. Hearst (1994b) defines
similarity as

sim(b1, b2) =
∑

t∈T wt,b1wt,b2√∑
t∈T w2

t,b1

∑
t∈T w2

t,b2

wt,b1 is a weight associated with the frequency of word t in text span b1. T is the
set of all tokens in the text minus closed-class categories. TopicSimilarity(c) returns
sim(leftwords(c), rightwords(c)).

Span lengths

Intuitively, some connectives have a argument-length-dependent distribution. A Contrast
relation will rather have a short satellite, at least, related to the total length of the text.
Authors are expected to focus on their main argument, not on counter-arguments. Thus,
the ratio of the text span lengths (in words) is used as feature.

While Knott (1996) notes “Insensitivity to span size is a useful feature of coherence
relations” (p. 13), Marcu (1997, 2000) uses the number of subconstituents as a feature. The
analyzer shown here lets the learning algorithm decide whether span length is an important
feature.

As paratactic relations may also show a preference for the number of elements contained,
the number of nuclei is counted. The feature Spanlength(c) returns the number of nuclei
to the left of c. This can be a local feature, as the parser follows left-to-right processing.

5.3.4. A parsing algorithm for rhetorical structure

All the techniques and analysis steps described before now come together in an attempt to
derive valid rhetorical structure from a text.

The classifiers described are already able to make different kinds of useful decisions:

• Rhetorical relation: this decision comes directly out of running the multi-class classifier
on a classification instance.

• Nuclearity (which text span is the nucleus?): For hypotactic relations, we run each
polychotomizer twice, once for each possible distribution of roles (satellite/nucleus).

• Attachment preference for a text span during structure building: Again, different
possible attachment decisions may be stored and scored using the polychotomizer.
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Those decision types are all integrated when it comes to rhetorical parsing. Whenever a
decision concerning two text spans is to be made, all structurally sound decisions5 are con-
verted into a set of classification instances, which are then scored using the polychotomizer.
The best scoring are explored further. Note that in each attachment situation, the parser
must also decide about the relation that holds between the two spans in question and, in
the case of a hypotactic relation, which element is assigned the role of nucleus.

As for the non-local features used, we cannot (finally) classify a classification instance
before we know the rest of the tree. Since classification decisions depend on each other, we
need a two-pass decision-making strategy.

• Parse: Beam-search based preselection of a chart containing all possible derivations:
During first pass, not all information is available. Based on the local information that
is available, search space is reduced. We note the best K possible decisions and expand
them.

• GlobalScore: Scoring each possible derivation with the global set of features and
selecting the best one. Each analysis (containing no disjunctive interpretations) is
scored using full context.

The selected discourse tree represents an unambiguous rhetorical analysis, structurally
conforming to RST.

Formal description of the parsing algorithm Note that the functions LocalClassify
and GlobalClassify call binary classifiers.

1. Beam-search based edge detection:
Global structures:
R : set of relations C : set of edges of the form < i, r, β, n > (chart)

Parse (L: list of terminal edges):
for each l ∈ L,

C ← l,
Complete(l)

Complete(is: edge index):
O : set of triples < score, classification instance, nuclearity >
for all i ∈ C, with RightBorderOf(is) = LeftBorderOf(i):

ci : classification instance
for all r ∈ R

if paratactic(r)
ci :=< r,ChildrenOf(is), i > (present children in old / new edge)

5The analysis must form a valid tree. In short: text spans described by rhetorical relations may not overlap
and must be contiguous. There may be not more than one rhetorical relation in the final, unambiguous
analysis of a text for two spans of text; nuclearity assignment must be unambiguous and each relation
must be either hypotactic or paratactic. Marcu (2000) develops a formal framework.
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O ←< LocalClassify(ci) , ci , NUC >
else if hypotactic(r)

ci :=< r,ChildrenOf(is), i > (new element is satellite)
O ←< LocalClassify(ci) , ci , SAT >
ci :=< r,< i >,Flatten(ChildrenOf(is)) > (... is nucleus)
O ←< LocalClassify(ci) , ci , NUC >

for the K highest-scoring classification instances < r, β, e, a >∈ O,
ij := a new index
if (a = NUC)

C ←< ij , r, β
⊕

< is >, 2 > (second element is nucleus, or r is paratactic)
else

C ←< ij , r, β
⊕

< is >, 1 > (second element is nucleus)
Complete(ij)

LocalClassify (ci =< r, β, γ > : classification instance):
observe all local features in ci and apply classifier for relation r to
the resulting feature vector. Return its normalized score.

LeftBorderOf (i: edge index):
for the e =< i, r, β, n >∈ C,

if MinimalDiscourseUnit(β1), return β1.
else, return LeftBorderOf(β1).

RightBorderOf (i: edge index):
for the e =< i, r, β, n >∈ C, k = |β|,

if MinimalDiscourseUnit(βk), return βk.
else, return RightBorderOf(βk).

Flatten (γ: list of edge indexes with |γ| = 1):
return γ1

2. Derivation scoring

GlobalScore:
O = : set of pairs <score, set of edges>
for each well-formed I ⊂ C

t:=0 : score
n:=0 : counter
for each e ∈ I

for each ci ∈ φ(e)
t := t + GlobalClassify(ci)
n := n + 1

O ←< t
n , I >
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return: I with highest score s in < s, I >∈ O

GlobalClassify (ci =< r, β, γ > : classification instance):
observe all features in ci and apply classifier for relation r to
the resulting feature vector. Return its normalized score.

A worked example As an example for how the algorithm determines tree structure, we
discuss the analysis of a short text fragment from the Potsdam Corpus.6 While the text is
original, the data structures shown are not actual data for reasons of simplicity. We will
use elements from URML to describe the state of the chart.

Parse The analyzer begins with inserting an edge with a terminal element (maz9612.1) in
the chart. There are no adjacent edges to the left, so we shift the next edge as well:

<segment id="maz9612 .1">

The army expects no consequences for the regional developments

in the tourist sector from its activities in the air.

</segment >

<segment id="maz9612 .2">

Years of experiences in other parts of the republic had shown that

military facilities can indeed coexist with the interests of tourism.

</segment >

For the edge maz9612.2, there is one adjacent edge to the left. Each known relation is
hypothesized to hold between those two edges, hypotactic relations are tested twice for each
distribution of nucleus/satellite. We add the best two edges to the chart:

<hypRelation id="maz9612 .1001a" type="evidence" score="0.4">

<nucleus id="maz9612 .1" />

<satellite id="maz9612 .2" />

</hypRelation >

<hypRelation id="maz9612 .1001b" type="background" score="0.2">

<nucleus id="maz9612 .1" />

<satellite id="maz9612 .2" />

</hypRelation >

For the two terminal segments in our chart, other attachments may exist than the two
relations shown. It may well be that maz9612.1 and maz9612.2 are not directly connected
through a relation at all. These possibilities are explored in the further steps. Next, the
third minimal discourse unit is shifted:

6The original document is in German. The translation shows that discourse markers are hard to translate,
in this text jedenfalls (anyway, anyhow, by all means, here: after all). The original text, which is the
basis for the rhetorical analysis given, reads

[Die Bundeswehr geht davon aus, dass ihre geplanten Aktivitäten aus der Luft keine relevanten Auswirkungen
auf die Entwicklung der Region im touristischen Bereich haben werden.] [Jahrelange Erfahrungen in anderen
Gebieten der Bundesrepublik hätten gezeigt, dass militärische Einrichtungen durchaus mit den Interessen des
Tourismus in Einklang zu bringen seien.] [So jedenfalls steht es in der Erläuterung zum Luft/ Bodenschießplatz
bei Wittstock.] [Dazu werden in der kommenden Woche die betroffenen Gemeinden angehört.]

51



5. Rhetorical Analysis

<segment id="maz9612 .3">

This is , after all , written in the declaration regarding the air - and land

firing

range close to Wittstock.

</segment >

This edge as three adjacent nodes: maz9612.2, maz9612.1001a and maz9612.1001b. For
all known relations and all distributions of nuclei involving an adjacent node and the new
segment, new edges are hypothesized. If 15 hypotactic and 4 paratactic relations are used (as
in the Potsdam Corpus), we need consider 102 possible attachment, relation and nuclearity
choices. Again, we keep the 2 best choices:7

<hypRelation id="maz9612 .1002a" type="justify" score="0.3">

<nucleus id="maz9612 .2" />

<satellite id="maz9612 .3" />

</hypRelation >

<hypRelation id="maz9612 .1002b" type="summary" score="0.4">

<nucleus id="maz9612 .2" />

<satellite id="maz9612 .3" />

</hypRelation >

These new relations are again subject to attachment to another adjacent node. There is only
one adjacent node (maz9612.1). Choices for relations and nuclearity are scored, resulting in
two additional edges:

<hypRelation id="maz9612 .1003a" type="evidence" score="0.7">

<nucleus id="maz9612 .1" />

<satellite id="maz9612 .1002a" />

</hypRelation >

<hypRelation id="maz9612 .1003b" type="evidence" score="0.6">

<nucleus id="maz9612 .1" />

<satellite id="maz9612 .1002b" />

</hypRelation >

There are no possible attachments for these new edges, so a new terminal segment is shifted:

<segment id="maz9612 .4">

In these matters the affected communities will be heard next week.

</segment >

Edges to be considered for attachment are maz9612.3, maz9612.1002a, maz9612.1002b,
maz9612.1003a, maz9612.1003b. We assume the following scores:

<hypRelation id="maz9612 .1004a" type="justify" score="0.3">

<nucleus id="maz9612 .3" />

<satellite id="maz9612 .4" />

</hypRelation >

<hypRelation id="maz9612 .1004b" type="sequence" score="0.6">

<nucleus id="maz9612 .1003a" />

<nucleus id="maz9612 .4" />

</hypRelation >

Node maz9612.1004a could be attached to maz9612.2, maz9612.1001a, maz9612.1001b. The
classifier ensemble votes in favor of the following two edges:

7In a better form of the beam search algorithm, we might choose to keep more than two relations according
to their scores and the number of relations considered.
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Elaboration

	

Evidence

The army expects
no consequences for
the regional develop-
ments in the tourist
sector from its activ-
ities in the air.

Years of experiences
in other parts of the
republic had shown
that military facili-
ties can indeed co-
exist with the inter-
ests of tourism.

	

Justify

This is, after all,
written in the dec-
laration regarding
the air- and land
firing range close
to Wittstock.

In these matters
the affected com-
munities will be
heard next week.

Figure 5.5.: Result of parsing process.

<hypRelation id="maz9612 .1005a" type="elaboration" score="0.4">

<nucleus id="maz9612 .2" />

<satellite id="maz9612 .1004a" />

</hypRelation >

<hypRelation id="maz9612 .1005b" type="elaboration" score="0.4">

<nucleus id="maz9612 .1001a" />

<satellite id="maz9612 .1004a" />

</hypRelation >

Node maz9612.1005a can be attached to the first discourse segment:
<hypRelation id="maz9612 .1006a" type="preparation" score="0.1">

<satellite id="maz9612 .1" />

<nucleus id="maz9612 .1005a" />

</hypRelation >

<hypRelation id="maz9612 .1006b" type="elaboration" score="0.2">

<nucleus id="maz9612 .1" />

<satellite id="maz9612 .1005a" />

</hypRelation >

All minimal discourse units have been processed and all possible attachments were scored.
There are 16 edges in the chart. It’s status in URML terminology is now forest-complete.

GlobalScore The second phase of parsing scores all trees contained in the chart. Other
than during the Parse step, classification uses global and local features, as for each relation
and each classification instance, context is available. We consider all top-level nodes that
span all minimal discourse units. In our case, these are maz9612.1004b, maz9612.1005b,
maz9612.1006a, maz9612.1006b. The best-scoring analysis is based on maz9612.1005b.
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<analysis id="maz9612.analysis4" score="0.8" status="interpretation">

<hypRelation id="maz9612 .1001a" type="evidence">

<nucleus id="maz9612 .1" />

<satellite id="maz9612 .2" />

</hypRelation >

<hypRelation id="maz9612 .1004a" type="justify">

<nucleus id="maz9612 .3" />

<satellite id="maz9612 .4" />

</hypRelation >

<hypRelation id="maz9612 .1005b" type="elaboration">

<nucleus id="maz9612 .1001a" />

<satellite id="maz9612 .1004a" />

</hypRelation >

</analysis >

This analysis, visualized in Figure 5.5, represents the final outcome of the analysis process.

5.4. Support Vector Machine learning

We use supervised machine learning to run the classifiers described in the previous section.
This means: the classifiers base their decisions on knowledge that is automatically acquired
from a set of sample documents. During training, the machine learning algorithm determines
general characteristics of the samples that belong to each assigned category, in our case:
the relations. The acquired knowledge, commonly called language model, may be used to
recognize the characteristics found in new, not yet categorized data that is presented to the
classifiers. In the following, the choice of support vector machines (SVM) for this learning
task is discussed, and a brief introduction to SVMs in learning and classifying is given.8

5.4.1. Learning

To train the system, the documents of the training set are compiled into classification
instances, which result, in turn, in training patterns (pairs of feature vectors and assigned
classes). The decision about which training algorithm to chose depends on certain properties
of the training data. There are several learning and classification algorithms, and usually,
there is more than one training algorithm available for each classification method.

• Our classification problem uses features that are inter-related, and the exact qualita-
tive and quantitative feature inter-dependence is not known. Bayes-based algorithms,
a standard in statistical language processing (Manning & Schütze, 1999), can only ap-
proximate the ideal classification solution in this case. A training algorithm is needed
that can solve highly non-linear problems.

• We also need an algorithm that handles a large number of features (> 1000) well.

• Compared to other machine learning tasks, we train on a small number of samples
(< 10000).

Support Vector Machines (Vapnik, 1995) fulfill all these criteria with ease. They haven
shown to perform extremely well on different kinds of classification tasks, usually with very

8I follow Schölkopf (1998) and Burges (1998) in the discussion of SVMs.
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little a-priori knowledge involved. SVMs are based on three foundations: SVMs are large-
margin classifiers and they use a kernel to transform the feature space. In the context of
machine learning, SVMs can be recast as neural network (however, with a sophisticated
training algorithm), and they can be used as binary classifiers or for regression estimation.

Large-margin hyperplane separation The task of training a linear classifier can be seen as
finding a separation hyperplane in feature space. Our training samples (i.e. feature vectors)
can be represented as data points in an N -dimensional space, where N is the number of
features involved. Giving the coordinates of each sample, the feature vectors points into this
space. We consider the binary classification case, where each sample belongs to one of two
classes (+1, −1). A hyperplane divides the feature space, and it can be used to separate
all or most of the data points. Once the hyperplane is determined, we have a classifier that
and thus assigns a +1/−1 vote to each sample. The distance from the closest point of the
hyperplane to a datum will later be interpreted as regression score.

The main idea of large-margin classifiers, the group of classifiers SVMs belong to, is the
following: we aim at constructing the hyperplane (given by the equation ~w · x + b = 0, ~w ∈
RN , b ∈ R) so that the distance between the hyperplane and the nearest point(s) is maximal
(Figure 5.6). This results in the following solvable quadratic optimization problem:

Find ~w ∈ RN , b ∈ R, and ζi, i = 1, 2, ..., n, to minimize (
∑

i ζi)
q

n + λ‖~w‖2
under the constraints

~w · ~xi + b ≥ 1− ζi, for yi = +1,

~w · ~xi + b ≤ −1 + ζi, for yi = −1,

ζi ≥ 0, i = 1, ..., n.

ζi allows for a ‘soft’ margin: it is 0 only in the separable case. Through ζi, support vectors
(selected feature vectors that are closest to the separation hyperplane) are chosen; ζi then
denotes their distance to the hyperplane, so that the hyperplane vector w will not be needed,
as we will see.

The length of vector ~w is minimized, but through a λ coefficient, it can be weighted
against the influence of noise in the training data.

In this optimization problem, time complexity depends on the number of samples n
supplied, not on the number of features given, which makes SVMs suitable for rich-feature
problems.

Figure 5.6 shows an example of large-margin linear separation. Note that the above
formula – and also the actual classifier that is described lateron – only depends on the
calculation of a dot product of vectors. This allows us to generalize to cases where data is
not separable by means of a linear hyperplane.

The kernel trick Optimal separation is not necessarily linear: in the simplified two-dimensional
case, we could separate data with a non-linear function better. SVMs make use of a kernel
k to transform non-linear feature vectors into linear feature space F , before applying the
training or classification algorithm:

Φ : RN → F
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Figure 5.6.: Linear large-margin classification in the non-separable case in two-dimensional
feature space. For two-dimensional space, a hyperplane is a line.
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Figure 5.7.: A kernel can transform non-linear feature space (left) into linear feature space
(right). (Here: fictious kernel.)

Figure 5.7 visualizes this scheme. The kernel integrates transformation and calculation of
the dot product of two vectors:

k(~x, ~y) := Φ(~x) · Φ(~y)

This allows for some optimization: the kernel is recast as a simple mapping function Φ that
is unexpensive to compute. The kernel we use in our approach is a Radial Basis Function
kernel:

k(~x, ~y) = exp(−‖~x− ~y‖2/(2σ2))

σ is a parameter which can be used to steer the generalization trade-off between precision
and recall in the classifiers.
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Training algorithms We have seen that a quadratic optimization problem is to be solved
during the training of a support vector machine. While the number of features does not
have exponential influence on training time, the number of training samples appears in the
optimization problem as severe factor. Specialized training algorithms such as SVMLight
(Joachims, 1998) and SVMTorch (Collobert & Bengio, 2001) allow for a fast, iterative selec-
tion of support vectors from the training data. SVMTorch gives a training time complexity
of O(n2).

5.4.2. Solving

Solving is a computationally little expensive operation. We add up the support vectors
selected during the training process via ζi. Solving time depends linearly on the number of
support vectors:

f(~x) =
∑

i

ζi(~x · ~xi) + b

For binary classification, sign(f) gives the class. In our case, we use f as score.

Figure 5.8.: A separable problem with 20 samples analyzed using a radial basis function
kernel (σ = 10). 6 support vectors in class (-1) and 7 support vectors in (+1)
were identified (white outline). (Generated with software courtesy of the AT&T
Speech and Image Processing Services Research Lab.)

5.4.3. Parameter tuning

SVMs offer two parameters that should show significant effect on the classification perfor-
mance. With a higher C coefficient, generalization capacity rises, and overfitting can be
avoided. (Overfitting occurs when a classifier performs very well on the training data but
poorly on the test set. In this case, the training algorithm does not generalize enough.) Sec-
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ondly, the kernel – in our case, a gaussian kernel – can be configured. As mentioned before,
a parameter σ defines the mapping from non-linear feature space. (Duan et al., 2001)

C and σ for our approach have been determined through iterative regression testing. For
the evaluation of the approach, C is set to 25 and σ is set to 35. We found these values to
work well.

5.4.4. Mapping multi-class problems to binary ones

SVMs are binary classifiers (dichotomizers), but we need to assign each classification in-
stances a relation out of more than two possible relations. One very common solution to
this challenge is the one-against-all strategy. This means training k binary classifiers if k
relations are known. During solving, all k binary classifiers are run, and the best-scoring
relation is chosen. We call the ensemble of k classifiers a polychotomizer or multi-class
classifier. This technique is integrated in the parsing algorithm.

There are several alternatives to the one-against-all method. The pairwise classification
strategy trains binary classifiers on all existing pairs of classes, which leaves us with (k−1)k

2
binary classifiers. Because each of the classifiers trains on only a subset of the data and
the training time complexity is worse than linear, this scheme can actually work quicker.
(However, with 60 relations, as in the English corpus after pruning, we would still have to
train 1770 classifiers.) Another way of implementing the polychotomizer is Error-correcting
output coding (Dietterich & Bakiri, 1995): we train several binary classifiers (M). For each
of them, some of the original classes are selected and marked as +1, all others -1. This
can be represented as vector {+1,−1}k. This way, each classifier is trained on a different
partition of the training set. The process yields a decoding matrix D = {+1,−1}k×‖M‖.
During classification, each classifier is run, giving us a vector ~v of responses. In the ideal
case (all classifiers return an error-free decision), ~v equals one of the rows in D. If one or
more classifiers are in error, the closest match is chosen (smallest Hamming distance). The
crucial algorithm here is the one that chooses the best M . For the case of margin-classifiers
that return not just a binary classification decision, but a distance, Allwein et al. (2000)
and Passerini et al. (2002) propose more elaborate methods.

Schölkopf & Smola (2002) note that none of the aforementioned methods generally out-
performs the others. In the parsing algorithm, we apply the one-against-all strategy for
reasons of simplicity, leaving error-correcting output coding open to be evaluated.
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6.1. Introduction: tool chain concept

Data retrieval, conversion and interface tools are largely implemented in Perl. Almost
all of them generate and augment URML data. The rhetorical analyzer uses a machine-
learning framework (C++, C) which can interface several approaches to learning. Tool
chain architectures have often been employed, often in conjunction with SGML or XML
annotation in data-intensive linguistics (Christ, 1994; Cunningham et al., 1996; McKelvie
et al., 1997).

6.2. Part-of-speech tagger

Part-of-speech (POS) tagging is accomplished using Brants (2000). In general, the tagger
achieves an accuracy of > 97 percent for German data. It is trained on the NEGRA corpus
(Skut et al., 1997). For the English corpus, the tagger is trained on the Susanne corpus
(Sampson, 1993).

To designate POS for each token in URML, we use an additional XML tag. The resulting
XML syntax specializes the basic URML; as a consequence, it is fully backwards-compatible.

6.3. Segmentizer

The segmentizer works on the POS data and on punctuation; it is implemented in Perl.

6.4. Rhetorical analyzer

6.4.1. Accessing and indexing the Document Object Model

The rhetorical analyzer makes heavy use of the Document Object Model (DOM) to work
with the XML data. It is implemented in an object oriented fashion and provides reusable
classes for accessing the XML corpus database. We use Xerces (http://xml.apache.org) as
XML parser, which provides the DOM interface. However, Xerces does not provide indexing
for fast access of the data. This is handled in a separate Docs class, through which the DOM
is accessed. Besides the Hash-based indexing of all documents and document nodes, word
indexes exist for each relation node of a document. This speeds up the checking of cue
phrase based features and of topic chains.

6.4.2. Machine learning framework

Our machine learning library DRSVMlib used has been previously tested and employed
(Reitter, 2002b) and allows interfacing two different SVM libraries, namely SVMTorch (Col-
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Figure 6.1.: Most tools work with the URML format that allows incremental annotation on
various linguistic levels. The corpus annotation tool requires a special format.
The visualization tool operates with a TeX conforming format.
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DRSVM

addSample(categories, features:map<long,float>, info)
addCategory(name:string)
removeSparseCategories(threshold:int)
learn()
evalFile(name:string)
solve(features:map<long,float>): long
saveToFile(filename:string)
loadFromFile(filename:string)

DRSVMTorch
kernelParameters

DRSVMlight
kernelParameters

DRVote
weights

Figure 6.2.: Class diagram describing the architecture of the machine learning framework.

lobert & Bengio, 2001) and SVMlight (Joachims, 1998). DRSVMlib provides a set of C++
classes. The class Corpus encapsulates the collection of sample data, storing and retriev-
ing the data. It is used in learning and evaluating and can run evaluation procedures on
the data. DRSVM is an abstract class (see Figure 6.3) that represents the classifier. It is
specialized as DRSVMTorch, DRSVMlight and DRSVMVote. The first two act as wrapper
classes around the original implementations of SVMTorch and SVMlight. The latter is a
simple classification algorithm that calculates maximum-likelihood probabilities for single
feature-class combinations and lets these classifiers vote to achieve a classification result.

6.4.3. Parsing

The parsing algorithm keeps a chart (class Chart) to store active nodes during the first phase
(beam-search based on local classification). In the second phase, only full well-formed trees
are considered and scored. Therefore, the chart provides efficient mechanisms to select a
subset of all edges. For an overview of the learning and parsing architecture, see Figure 6.3.

DOM nodes are created along with the edges in the chart, as the feature checking methods
in the Corpus class always operate on the DOM. Also, serialization is possible at any point.

6.5. Visualization and conversion tools

The rst package for LATEX is a visualization tool to enable comfortable typesetting of corpus
data and rhetorical tree structures (Appendix C). It is implemented in TEX and recursively
evaluates rhetorical descriptions to draw diagrams. An environment rhetoricaltext displays
tagged text segments that can be referred to from other places in the document.
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Corpus

observeFeatures : map<long,float>
prepareFile(filename:string)
learn()
evaluate()

Docs

load(filename:string)
indexSegments()
indexRelationsInCurrentDoc()
getClassificationInstances() : vector<ClassificationInstance>
setFirstDoc()
setNextDoc()
getText(node: RelationNode) : string
collectAllChildren(node: RelationNode) : vector<RelationNode>

Parser

fillIn(EdgeIndex segment)
parse()

Chart

cloneEdgeAndAddDaughter(toClone: EdgeIndex,
toAdd:EdgeIndex, role : RelRole)
findEdgesThatEndRightBefore(borderEdge: EdgeIndex)
addTerminalEdge(edge: EdgeIndex)
setEdgeClass(edge: EdgeIndex, rel: RelType)
setEdgeNucleus(edge: EdgeIndex, nucNr: int)

DRSVM

Figure 6.3.: Class diagram of the architecture used to implement the rhetorical parser.

We provide an application to convert sets of documents created with RSTTool from the
RS3 format to URML. It was used during the corpus creation. Another program converts
the english language corpus (Carlson et al., 2001) from its LISP-style format to URML. Both
tools detect the use of RST schemata (see 2.5.2), where several relations share a nucleus in
order to issue a warning.
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7.1. Results

The rhetorical analysis algorithm is subject to extensive evaluation.
We focus on the central – and hardest – task the analysis system faces. We evaluate the

assignment of a relation to a group of text spans. Each known relation node in the test
corpus is subject to the multi-class classification through the ensemble of binary classifiers
which works on all classification instances resulting from the relation. The feature set for
these classifications is the global set. The best scoring decision is taken (as in the parsing
algorithm).

For each relation x, we give recall, a measure that tells us, how many of the relation nodes
from the corpus labeled with x are detected correctly by the binary classifier. Precision
indicates how many of the classification instances labeled x by the analyzer are correctly
labeled x.

The reason for this choice of evaluation mode is that we see the evaluation of the support
vector classification approach as the foremost goal of the implementation.

Classifiers are trained on 240 documents and evaluated on 50 documents from the LDC
corpus. The tests are 2-fold cross-validated. In this respect, the multi-class accuracy of our
implementation is 61.0 percent (Table 7.2). Semi-automatic regression tests for parameter
estimation of the SVM training algorithm and the SVM kernel were carried out on different
test partitions. For the Potsdam Corpus, accuracy is significantly lower (39.1 percent).
This can be explained by the fact that the training partition of the LDC corpus yielded an
average of 7976 classification instances, while only 1943 training samples are derived from
the Potsdam Corpus. With this amount of data, classification accuracy for the LDC corpus
is 56.0 percent (see Figure 7.1).

The evaluation of single feature classes in terms of their contribution to relation assign-
ment is of similarly important interest. We give data from a leave-one-out test (Table 7.1).
Learning and classification steps are run on the partioned test and training set, however,
during each run, one feature class is left out. The decrease in performance for each run
indicates the specific contribution of a feature to the classification performance. The table
shows the reduction in error rate (difference of accuracy divided by error rate with all fea-
tures enabled). We evaluate the analyzer with 10022 samples out of the LDC corpus in
two tries with 100 training documents and 90 test documents in each try. The Potsdam
Corpus is evaluated with 935 samples in four tries with 138 training documents and 35 test
documents. Due to its size, the data given is less significant.

Learning curve: Figure 7.1 shows how the performance of the system increases with the
number of training samples, i.e. classification instances. For these evaluations, we used
the following partitioning of the available data: 80 percent of all annotated documents
for training and 20 percent for testing. From the partitions, subsets of different sizes are
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Figure 7.1.: Learning curve for LDC corpus showing gain in accuracy with number of train-
ing samples.

chosen to produce an accuracy rating. For cross-validation, the experiment is repeated with
different randomly chosen data sets of the same size.

7.2. Analysis

We turn to a comparison of the results to a state-of-the-art approach. The relevant measure
used by Marcu (2000) is labeled precision & recall for parsing results with manually selected,
thus perfect segmentation: 57.9 percent precision, 56.3 percent recall. We automatically
segment texts for both the gold standard (corpus) and automated analysis, so standards
compare in this respect. However, our tests look at structurally correct relations only, so
the relevant measure to multi-class accuracy is Marcu’s precision.

To put the accuracy figures into perspective, we calculate a baseline value. The baseline
is established by having the classifier ensemble always chose the most common relation,
ELABORATION. It is 33.6 percent for the corpus used. As a theoretical upper bound
for analysis performance, we can consider inter-annotator agreement in corpus collection
efforts. Carlson et al. (2001) report kappa coefficients ranging from 0.62 to 0.80. Here, a
kappa value of 0 indicates random agreement, 1 perfect agreement. The agreement was
reached only after rigorous training and at the end of their corpus collection effort. Even
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Table 7.1.: How important are the features? [percent]
Relation Noun POS Punct TopSim Cue Len2nd Len1st

LDC Corpus (English)
Attribution 0.6 0.2 15.9 0.5 11.6 15.1
Background 0.7 -0.2 4 0.7 -3.1 1
Comparison -2.3 0 1.7 4 70.7 -7.5
Condition 0 -1.4 -0.7 2.7 55.8 -2.7
Contrast 2.1 0.2 2.3 2.3 29.7 -0.5
Elaboration -0.4 -0.2 2.6 -0.2 3.5 -2.3
Enablement 0 0.6 0.9 1.5 10.6 -1.2
Evaluation -1.2 -0.2 -2.3 -2.1 8.5 -6.6
Explanation 0 -1.2 2.2 -1 20.9 -5.1
Joint -0.1 -0.6 -2.4 -2.5 15 -6.5
Reason 0 0 0 0 77.8 -22.2
Summary 2.8 1.9 6.5 5.6 65.7 6.5
Temporal -1.9 1.9 1.1 1.1 23 -0.7
Textualorganization 0 0 3.4 -2.3 4.5 9.1
Topicchange -9.9 4.2 7 -11.3 -4.2 1.4
multiclass -0.1 -0.1 2.8 -0.1 15.3 -0.7
Potsdam Corpus (German)
Cause 1.1 1.1 -5.6 -1.1 13.3 -6.7 -18.9
Concession 0 -1.7 0 1.7 36.2 -5.2 5.2
Conclusive 0 0 0 0 33.3 33.3 66.7
Condition 0 0 0 4.2 -8.3 -4.2 8.3
Conjunction 0 0 0 0 0 0 0
Contrastive 0 0 0 -3.8 19.2 -11.5 3.8
Evaluation 1.4 0 1.4 1.4 2.7 -0.7 6.1
Evidence 0 0 2.8 -2.8 2.1 -7.8 0.7
Framework 0 0 1.7 0 12.1 -5.2 -9.5
Interpretation 0 0 0 0 0 0 0
Joint 0 0 0 -8.3 16.7 -12.5 -12.5
Preparation -4.1 0 2.7 -4.1 6.8 -6.8 -6.8
Result 0 0 2.1 4.2 14.6 4.2 20.8
Sequential -0.9 0 0.9 0.9 -10.8 4.5 -1.8
Specification -0.3 0 0.3 -4.1 -2 -7.1 -8.4
multiclass -0.2 0 0.7 -1.4 5.4 -4.5 -2.9
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Table 7.2.: Relation assignment performance [percent]
LDC Corpus (English)
Relation Precision Recall
Attribution 64.3 79.4
Background 9.8 3.6
Comparison 60 6.4
Condition 48.6 45.9
Contrast 49.2 44.1
Elaboration 70.8 89.8
Evaluation 16.7 6.7
Explanation 33.3 24.8
Joint 46.3 52.7
Summary 45 26.5
Temporal 32.1 13.6
TextualOrg 33.3 20
TopicChange 28.6 36.4
Multi-class Accuracy 61.8

Potsdam Corpus (German)
Relation Precision Recall
Cause 20.6 13.6
Concession 18.5 9.6
Condition 25 10.5
Contrastive 14.3 5.4
Evaluation 31.6 29.3
Evidence 28.8 24.1
Framework 27.3 25
Joint 16.7 5.1
Preparation 35.3 50.9
Result 10 2.5
Sequential 31.3 28.4
Specification 52.2 75.2
Multi-class Accuracy 39.1

Table 7.3.: Training time per classifier [sec]

Background 427
Cause-result 292
Comparison 94
Condition 94
Contrast 371
Elaboration 2456
Enablement 137
Evaluation 222
Explanation 386
Joint 714
Manner-means 84
Reason 4
Same-unit 172
Summary 62
Temporal 236
TextualOrg 25
Topicchange 47
Topic-comment 61
Average 323
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then, as the kappa value indicates, there were several instances of disagreement among
human annotators.

Our analyzer achieves its accuracy with a well-defined classification method based on
large-margin separation and a sufficiently large data-set. Our English evaluation corpus is,
though presumably similar, not the corpus used in Marcu’s experiments. As the density
of rhetorical signals and the distribution of rhetorical relations differ greatly between text
genres and corpora, quantitative comparison seems difficult. Nevertheless, the accuracy rate
indicates excellent performance.

Examining the classification results for single relations (Figure 7.2), we find that cer-
tain rhetorical relations are recognized with relatively high precision & recall, in particular:
Elaboration/Specification and Attribution. Little surprisingly, these are the most-
frequent relations in the LDC corpus. More important than that, cue phrases are unlikely
to signal these relations. Attribution and Elaboration can be distinguished with infor-
mation from the punctuation feature.

Indeed, an experiment leaving out single features (Figure 7.1) shows that punctuation is,
after cue phrases, the feature that contributes most to overall classification accuracy. Some
harder problems, such as detecting the less frequent and ambiguously signaled Cause-Result
relation, are not solved as well by the ensemble of binary SVM classifiers. Here, further
research is necessary to determine the usefulness of Error-Correcting Output Coding instead
of a one-against-all training, as suggested by Allwein et al. (2000). Another approach to
investigate is training specific classifiers to disambiguate single rhetorical classifiers.

For some features and specific relations, the tests show even a decrease in performance (e.g.
7.5 percent for the Comparison relation and the Len2nd feature. This can be explained
by noise introduced by irrelevant features. The noise/signal ratio is particularly high for
certain relations, such as Reason, where only few examples are present in the corpus.

The learning curve converges with the maximum number of training samples used, the
corpus seems to be large enough for this kind of training task. The Potsdam Corpus contains
a lower number of training samples. The 18 binary SVM classifiers can be trained on 150
documents in reasonable time (216 min on 1 Mhz G4-CPU).
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7.3. Where do we go from here?

Looking at the evaluation data, we can define certain areas of interest for further work. It
seems obvious that a fully automatic structural analysis with relation assignment is unlikely
to reach usability without major improvement of the classifiers. As a consequence, the
optimization of the core classification system seems to be the first goal.

Improving the quality of features. We have shown that many of the feature heuristics do
not contribute significantly to the results. For the topic similarity measure, this fact might
be due to missing integration of a semantic network which would supply the algorithm with
a list of hyponyms, hypernyms and synonyms. Also, a pronoun binding algorithm might
add

Feature pre-selection While the training algorithm discards irrelevant features, it cannot
overcome the sparse data problem as described before. This leads to situations where
features lead to a decrease in performance. A hard-coded, relation-specific feature filter
based on linguistic knowledge may improve performance.

Using SVM classifiers to disambiguate discourse markers. Training a classifier for each
discourse marker is an approach we have not investigated in this thesis.

Improving the Potsdam Corpus. The classifiers showed a significantly worse performance
on the German corpus. Further validation and extension of the corpus may provide for a
credible comparison between languages.
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The work presented contributes to the research in rhetorical analysis in various ways: The
Potsdam Corpus contains 173 newspaper opinion texts, manually annotated and validated
with a standardized set of rhetorical relations. This is, to our knowledge, the first rhetorical
corpus in German language.

Underspecified Rhetorical Markup Language (URML) is a novel flexible, XML based
format that provides interfacing between tools in rhetorical analysis and corpus annotation.
As a stand-alone data format, URML is applied in the collection of a novel corpus of news
commentaries.

Rhetorical data can be visualized through the rst package for LATEX(Appendix C). It
enables users of LATEXto create, edit and typeset tree-like rhetorical structure diagrams and
corpus excerpts conveniently. It is the first and only package to do this.

On the implementation side, a C++ wrapper library provides a reusable common interface
to C-based classification algorithms and a voting algorithm.

All these elements work constitute a framework for the rhetorical analysis of texts. Its
instantiation is able to integrate a potentially high number of features using Support Vector
Machines. We show that it can assign rhetorical relations with an excellent accuracy.

Furthermore, we demonstrate a two-stage parsing algorithm that makes use of statistical
classifiers and the underspecified representation shown.

The analysis of features shows that only a few shallow feature types contribute to overall
recognition performance. The analysis of strengths and weaknesses in rhetorical analysis
suggests that further investigations should be based on both, corpora-driven learning and
evaluation and an abstract, dynamic model of rhetorical relationships that explains coher-
ence phenomena from a supra-semantic perspective.
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A. Glossary: Parsing Framework

Classification Instance A classification instance is a data structure that consists of a first
span, which is a list of relation and segment nodes, and a second span, which is a single
relation or segment node. This data structure is used to create a binary view onto the
rhetorical structure, which can have non-binary (multi-nuclear) nodes.

Classifier A classifier is a function f : RN → [−1,+1] which assigns class estimation to
a given feature vector. In a machine learning framework, it is trained using training data.
This data is a set of feature vectors that are annotated with a class:

(x1, y1), ..., (xn, yn) ∈ RN × {−1,+1}

Feature A local feature is a function C → [−1, 1]. It observes a linguistic property in a
given classification instance and returns a scalar (or binary) value. We often use the term in
the sense of “property” rather than function. Some features are automatically determined
from the training corpus, for example potential cue phrases. Other features are hard-coded.
These include “Size of second text span”, “Lexical similarity of first and second spans”.
A global feature takes the context of a classification instance in a rhetorical analysis into
account.

Feature vector A feature vector is an ordered list of feature values, x ∈ RN (with N being
the number of existing features). It is the result of the observation of all existing features
in a classification instance.

Nucleus Text span referenced from a relation. The nucleus usually carries the more signif-
icant utterance, while satellites can be removed from the text without disguising the central
intent of the author. (In URML: <nucleus id="15"/>.)

Relation One of a set of possible rhetorical relations that describe the relationship of two
or more text spans. Examples are Elaboration, Concession, Voluntary-Result.

Relation node A relation node is a data structure that consists of references to two other
relation nodes (nucleus and satellite) in the case of a hypotactic relation node, or a list of ref-
erences to at least two relation nodes in the case of a paratactic relation node. Furthermore,
the data structure contains information about the rhetorical relation (Cause, Contrast,
etc.) that holds between the nodes that are references. (In URML: <hypRelation> or
<parRelation>.)

Relation type There are two types of relations: Hypotactic relations, which connect a
nucleus and a satellite, and paratactic relations, which connect several nuclei.
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A. Glossary: Parsing Framework

Satellite Text span that is referenced from a relation.
(In URML: <satellite id="15"/>.)

Segment A segment is a terminal node in the tree that represents a rhetorical analysis. It
contains a minimal discourse unit. (In URML: <segment id="15"> ... </segment>.)
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B. An Extended URML Document

In the following, a sample URML document is shown. This document is taken from the
Potsdam Corpus and contains part-of-speech annotations (in the first discourse unit) and
meta-data.

<?xml version="1.0" encoding="utf -8" ?>

<!DOCTYPE urml SYSTEM "urml -extended.dtd">

<urml >

<header >

<reltypes >

<rel name="cause" type="hyp" />

<rel name="concession" type="hyp" />

<rel name="conclusive" type="hyp" />

<rel name="condition" type="hyp" />

<rel name="conjunction" type="par" />

<rel name="contrastive" type="par" />

<rel name="disjunction" type="par" />

<rel name="evaluation" type="hyp" />

<rel name="evidence" type="hyp" />

<rel name="framework" type="hyp" />

<rel name="interpretation" type="hyp" />

<rel name="joint" type="par" />

<rel name="means" type="hyp" />

<rel name="motivation" type="hyp" />

<rel name="otherwise" type="hyp" />

<rel name="preparation" type="hyp" />

<rel name="purpose" type="hyp" />

<rel name="result" type="hyp" />

<rel name="sequential" type="par" />

<rel name="specification" type="hyp" />

<rel name="specification -mn" type="par" />

<rel name="unconditional" type="hyp" />

<rel name="unless" type="hyp" />

<rel name="unstated -relation" type="hyp" />

</reltypes >

<postypes >

<pos name="\$(" />

<pos name="\$," />

<pos name="\$." />

<pos name="ADJA" />

<pos name="ADJD" />

<pos name="ADV" />

<pos name="APPO" />

<pos name="APPR" />

<pos name="APPRART" />

<pos name="APZR" />

<pos name="ART" />

<pos name="CARD" />

<pos name="FM" />

72



B. An Extended URML Document

<pos name="KOKOM" />

<pos name="KON" />

<pos name="KOUI" />

<pos name="KOUS" />

<pos name="NE" />

<pos name="NN" />

<pos name="PDAT" />

<pos name="PDS" />

<pos name="PIAT" />

<pos name="PIDAT" />

<pos name="PIS" />

<pos name="PPER" />

<pos name="PPOSAT" />

<pos name="PRELAT" />

<pos name="PRELS" />

<pos name="PRF" />

<pos name="PROAV" />

<pos name="PTKA" />

<pos name="PTKANT" />

<pos name="PTKNEG" />

<pos name="PTKVZ" />

<pos name="PTKZU" />

<pos name="PWAT" />

<pos name="PWAV" />

<pos name="PWS" />

<pos name="TRUNC" />

<pos name="VAFIN" />

<pos name="VAINF" />

<pos name="VAPP" />

<pos name="VMFIN" />

<pos name="VMINF" />

<pos name="VMPP" />

<pos name="VVFIN" />

<pos name="VVIMP" />

<pos name="VVINF" />

<pos name="VVIZU" />

<pos name="VVPP" />

<pos name="XY" />

</postypes >

</header >

<document id="maz3377">

<info ><source >Maerkische Allgemeine Zeitung 3377 09.10.2001 </source >

<section > 09.10.2001 VOR ORT : HAVELLAND : KOMMENTAR

</section ><suptitle > ANDRE WIRSING </suptitle >

<title > Absicht </title >

</source ></info >

<text >

<segment id="maz3377 .0">

<sign pos="NN">Absicht </sign > <sign pos="\$.">.</sign > </segment >

<segment id="maz3377 .1">Erst rührt sich niemand unter den Dallgower

Kommunalpolitikern , </segment >

<segment id="maz3377 .2">nun überschlagen sich alle mit Anträgen zur

Gemeindereform und den vorausgehenden Verhandlungen mit den südlichen

Nachbarn . </segment >

<segment id="maz3377 .3">Nicht klar wird zum jetzigen Zeitpunkt , </segment >
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B. An Extended URML Document

<segment id="maz3377 .4">welche Absichten hinter dem plötzlichen Aktionismus

stehen : </segment >

<segment id="maz3377 .5">Will die SPD -Fraktion - bisher völlig uneins über

Dallgows Zukunft - wirklich faire Verhandlungen anstreben ? </segment >

<segment id="maz3377 .6">Warum stellt sie dann schier unannehmbare

Bedingungen , indem sie den Bürgermeister mit einem solch eng geschnürten

Verhandlungsmandat ausstattet , dass dieser nur noch das Wie der

Eingemeindung klären darf . </segment >

<segment id="maz3377 .7">Warum beharrt die CDU auf einer neuerlichen

Einwohnerversammlung ? </segment >

<segment id="maz3377 .8">Warten die Christdemokraten nur darauf , genügend

Claqueure zusammenzubekommen , die sie in ihrer Ablehnung zu jeglichen

Fusionen bestätigen ? </segment >

<segment id="maz3377 .9">Allein eine Fraktion , die der Freien

Wählergemeinschaft , ist bisher mit einer einheitlichen und

nachvollziehbaren Argumentationslinie aufgetreten , </segment >

<segment id="maz3377 .10">bekennt sich zum Dreierbund und lässt Spielraum für

die Art des Zustandekommens . </segment >

<segment id="maz3377 .11">Die anderen werden am nächsten Mittwoch beweisen

müssen , dass sie es ehrlich meinen . </segment >

</text >

<analysis status="interpretation">

<info ><editor job="annotate" date="05.02.2002">Reitter </note ></info >

<parRelation id="maz3377 .1000" type="sequential">

<nucleus id="maz3377 .1" />

<nucleus id="maz3377 .2" />

</parRelation >

<parRelation id="maz3377 .1001" type="conjunction">

<nucleus id="maz3377 .10" />

<nucleus id="maz3377 .9" />

</parRelation >

<hypRelation id="maz3377 .1002" type="cause">

<nucleus id="maz3377 .11" />

<satellite id="maz3377 .1003" />

</hypRelation >

<parRelation id="maz3377 .1003" type="contrastive">

<nucleus id="maz3377 .1000" />

<nucleus id="maz3377 .1004" />

</parRelation >

<parRelation id="maz3377 .1004" type="contrastive">

<nucleus id="maz3377 .1001" />

<nucleus id="maz3377 .1006" />

</parRelation >

<parRelation id="maz3377 .1005" type="sequential">

<nucleus id="maz3377 .1008" />

<nucleus id="maz3377 .1009" />

</parRelation >

<hypRelation id="maz3377 .1006" type="specification">

<nucleus id="maz3377 .1007" />

<satellite id="maz3377 .1005" />

</hypRelation >

<parRelation id="maz3377 .1007" type="joint">

<nucleus id="maz3377 .3" />

<nucleus id="maz3377 .4" />

</parRelation >

<parRelation id="maz3377 .1008" type="contrastive">
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B. An Extended URML Document

<nucleus id="maz3377 .5" />

<nucleus id="maz3377 .6" />

</parRelation >

<parRelation id="maz3377 .1009" type="contrastive">

<nucleus id="maz3377 .7" />

<nucleus id="maz3377 .8" />

</parRelation >

</analysis >

</document >

</urml >
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C. Rhetorical Theory in LATEX with the rst
Package

C.1. Motivation

Drawing rhetorical analyses is no fun when you need to change and update diagrams as
you refine your work, or, more importantly, if a lot of analyses are to be drawn. Previous
solutions include O’Donnell’s RSTTool application (O’Donnell, 2000), which can output
(encapsulated) postscript graphics. However, these drawings are more suitable for reference
than for use in publications. Besides, pdfTeX has a a notorious problem with postscript-
items in source files.

Voilà, there we go: This package enables us to typeset beautiful diagrams with no hassle.
It is oriented towards the style of the diagrams shown in Mann & Thompson (1988) and
subsequent works.

Further developments may include a conversion tool to generate the rst format automati-
cally from RSTTool files or from the LISP-based format used in Carlson et al. (2001).

Please refer to the last section for copyright and usage information.

C.2. Installation

The file rst.sty is almost all you need. The package uses three additional packages, color,
which are usually installed in a well-equipped TEXsystem. If not, download and install
them:

• color1

• ifthen

• calc

Install rst.sty with the usual mechanisms of your TEXdistribution or simply put it in the
same directory where you keep the document that makes use of the rst package.

C.3. The rhetoricaltext environment

To give examples from a corpus, you can use the rhetoricaltext environment. Every environ-
ment is assigned its own identifier, counted as roman numeral.

1You can probably eliminate the need for the color package by removing the
usepackage{color} command and uncommenting four \providecommand statements in the rst.sty file.

76



C. Rhetorical Theory in LATEX with the rst Package

In the environment, single minimal discourse units are specified with the \unit command.
It takes two arguments: the first one is optional and specifies a label for this unit. This
label may be used to refer to the unit later on. The second argument to \unit contains the
text.

An additional command is the \source command, which takes one argument. This usually
identifies the exact source of the sample, e.g. an identification number in the corpus used.

You may refer to any given unit from any part of your document using the \refr command.
It takes one argument, which should be the label of a unit defined somewhere else in the
text. In case you make forward references, i.e. you refer to a unit that is defined later in
the document, you will need to compile the document twice to get rid of the ?? appearing
in the output. This is the same mechanism as with other kinds of references in LATEX.

Here’s an example:

In the following, \refr{bush2} is an embedded discourse unit.

\begin{rhetoricaltext}
\unit[bush1]{The Bush Administration,}
\unit[bush2]{trying to blunt growing demands from
Western Europe for a relaxation of controls on exports to the
Soviet bloc,}
\unit[bush3]{is questioning...}
\source{wsj$_{2326}$}
\footnote{Taken from the corpus described in \cite{carlson-corpus}.
Bracket annotation simplified.[...]}
\end{rhetoricaltext}

How do we treat the noncontiguous discourse unit
formed of \refr{bush1}, \refr{bush3}?

In the following, is an embedded discourse unit.

[The Bush Administration,]11A [trying to blunt growing demands from Western Europe for a
relaxation of controls on exports to the Soviet bloc,]11B [is questioning...]11C (wsj2326)

2

How do we treat the noncontiguous discourse unit formed of 11A, 11C?

C.4. Rhetorical structure diagrams

The rst package provides three types of diagram elements via the commands \dirrel, \multirel
and \rstsegment.

2Taken from the corpus described in Carlson et al. (2001). Bracket annotation simplified. The other
examples are made up. They are not intended to demonstrate any linguistic/rhetorical properties.
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C. Rhetorical Theory in LATEX with the rst Package

C.4.1. Terminal elements

rstsegment defines a terminal-level minimal discourse unit : it is meant to contain normal
text. This is what it expects to be given as argument. While omitting this command
and simply typing the text in an \dirrel argument might work sometimes, it could give
unexpected (and not-so-nice) results.

C.4.2. Directed relations

\dirrel draws a schema diagram for one or more directed (nucleus-satellite) relations. There
is always one designated nucleus per \dirrel schema.

This command always takes 2n arguments. They should be thought of as pairs: The first
argument always states a relation name, the second one contains the content of the span.
Every argument pair given draws a span and a relation arrow to the nucleus argument of
the schema. The nucleus is identified by leaving the relation name empty. Alternatively,
you may specify \nuc if you think that’s better to read. There may be up to four argument
pairs.

\dirrel{}
{\rstsegment{Stoiber kandidiert,}}{Concession}
{\rstsegment{auch wenn der Mann in Talkshows kaum frei reden kann.}}

	

Concession

Stoiber kan-
didiert,

auch wenn der
Mann in Talk-
shows kaum frei
reden kann.

C.4.3. Multinuclear relations

multirel draws a diagram for a multi-nuclear relation. It takes at least two arguments. The
first argument is the relation name. All other arguments contain the contents of the spans
that are connected by the relation.

\multirel{Contrast}
{\rstsegment{Schr\"{o}der wolle nicht wiedergew\"{a}hlt werden,
sagte er, falls er die Arbeitslosigkeit nicht reduzieren k\"{o}nne.}}
{\rstsegment{Trotzdem tritt der Kanzler wieder zur Wahl an.}}
{\rstsegment{Die Aussichten sind nicht schlecht.}}
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Contrast

Schröder
wolle nicht
wiedergewählt
werden, sagte
er, falls er
die Arbeit-
slosigkeit
nicht re-
duzieren
könne.

Trotzdem tritt der
Kanzler wieder zur
Wahl an.

Die Aussichten sind
nicht schlecht.

C.4.4. Configuration

The rst package knows a few configuration variables you may use to alter the appearance of
the diagrams.

Width control

The \compressionWidth value is the maximum width that a single span may have in any
diagram. Set it to 0pt to let not limit the width. Used on a per-diagram basis, it makes an
excellent way of compression a diagram horizontally without making it look ugly. See the
last example in section C.5 to get an impression of what this parameter does.

\setlength{\compressionWidth}{0pt}

The \terminalWidth value is the maximum width that a single span may have in any
diagram. Set it to 0pt to let not limit the width.

\setlength{\terminalWidth}{100pt}

You may also alter the margins at the left and the right hand side of the tree with the
\rstmargin value.

\setlength{\rstmargin}{3pt}

Finally, the following command sets the minimum space that’s between spans in the
\rstmiddleskip value.

\setlength{\rstmiddleskip}{1em}
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Colors

\relnamebgcolor contains the name of the background color of relation names. Depending
on other packages used, white could avoid transparency. (This functionality is disabled in
the rst.sty package by default to enable the use of \raisebox commands in relation names.)
\relnamecolor specifies the name of the text color of relation names.

\renewcommand{\relnamebgcolor}{white}% background color
\renewcommand{\relnamecolor}{red}% relation name color

Please note that these settings may or may not work, depending on your output format
(Postscript or PDF). In my experiments, PDF worked generally better.

C.5. Complex structures - more examples

As you can see from the following examples, trees may be arbitrarily complex. In case
the trees get to wide, reference numbers may be used in conjunction with the rhetoricaltext
environment. Or, alternatively, you might want to consider choosing a more handy example,
as readers tend to prefer smaller diagrams over unnecessarily complex ones...

Note: You may raise or lower the relation names in the diagrams with the \raisebox
command in the relation name argument of directed relations. (See example below.)

Note: Position relation names vertically by adding space at the left or right hand side.
Use either the \ backslash syntax or an ordinary \hspace command. (See example below.)

Note: If you do not want to give a relation name, just specify one space with a \backslash
(\ ) as shown below.

{\setlength{\terminalWidth}{90pt}
\multirel{Contrast\ \ \ \ }

{\rstsegment{Schr\"{o}der wolle nicht wiedergew\"{a}hlt werden,
sagte er, falls er die Arbeitslosigkeit
nicht reduzieren k\"{o}nne.}}

{\rstsegment{Trotzdem tritt der Kanzler wieder zur Wahl an.}}
{\rstsegment{Die Aussichten sind nicht schlecht.}}
{\rstsegment{aber Schr\"{o}der wirkt zeitweise verzweifelt.}}

}
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Contrast

Schröder
wolle nicht
wiedergewählt
werden, sagte
er, falls er
die Arbeit-
slosigkeit
nicht re-
duzieren
könne.

Trotzdem tritt der
Kanzler wieder zur
Wahl an.

Die Aus-
sichten
sind
nicht
schlecht,

aber Schröder
wirkt zeitweise
verzweifelt.

\multirel{Joint}{
\dirrel{Preparation}{\rstsegment{0}}

{\raisebox{-2em}{Concession}}{\rstsegment{1}}
{}{\dirrel{Background}{\rstsegment{2}}

{\ }{\dirrel{Cause}{\rstsegment{3}}
{\ }{\rstsegment{4}}
{}{\rstsegment{5}}}

{}{\rstsegment{6}}}}
{\rstsegment{7}}}

Joint

RR

Preparation

Concession

0 1

RR

Background

2
RR

Cause

3 4 5

6

7

{\hspace{30pt}\setlength{\compressionWidth}{160pt}
\multirel{Joint}

{\dirrel{Concession}
{\rstsegment{Zugegeben: Er war schlecht gelaunt.}}
{\dirrel
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{Background}{\dirrel{Cause}
{\rstsegment{Aber weil er da war,}}
{}{\rstsegment{rief sie ihn.}}}

{}{\rstsegment{Er hatte gute Ohren.}}}}
{\multirel{Contrast}

{\rstsegment{Stoiber kandidiert.}}
{\rstsegment{Aber frei reden kann der Mann kaum.}}}

}

Joint

R

Concession

Zugegeben: Er war
schlecht gelaunt.

	

Background

	

Cause

Aber weil
er da war,

rief sie
ihn.

Er hatte gute
Ohren.

Contrast

Stoiber kan-
didiert.

Aber frei re-
den kann der
Mann kaum.

C.6. Known bugs

Drawing the diagrams is, unfortunately, slow. A solution to overcome this would be to use
a faster machine.

The package can only draw up to four spans in one constituent, which is due to the limited
number of arguments in TEX/ LATEX.

The vertical line in compressed diagrams can be too far to the right, if the compression
value is set too low. This will be improved in a later version. I recommend setting the
compression value on a per-diagram basis.

The relation name drawn in multi-nuclear relations is often drawn over some lines. In a
later version, I might find a way to put a white box behind the relation name. Sometimes,
the Bezier curves of nucleus-satellite relations may also overlap, which is less favorable. This
would be hard to change.

If the \compressionWidth length is set, the width of the diagram’s bounding box may
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be to small, resulting in a diagram that appears too far left. This has proven to be too
complicated to be fixed. Please accomodate manually using \hspace.

Please notify me in case you encounter any other problems.

C.7. Copyright and Acknowledgements

Please feel free to use this package for your own purposes. If you prepare a publication
with it that is not freely available via Internet, I would appreciate a copy of it. If you
make extensive use of it, you may want to refer to this manual or the website. Do not
redistribute the package itself, if any part of it is altered or left out. Of course, I welcome
your suggestions and additions, and I will happily include helpful modifications in a new
release.

I am grateful to Stephan Lehmke for providing his naturalparbox.sty from the TeXPower
package (Lehmke, 2002).
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Abstract in German – deutsche
Zusammenfassung

Rhetorische Analyse mit Rhetorical Structure Theory Der Autor fast jeden Textes will in-
formieren, überzeugen oder in Frage stellen. Wesentliches Mittel bei der Realisierung dieser
Intentionen ist die Argumentation: Aussagen werden begründet, näher ausgeführt, bewiesen
oder widerlegt. Gegensätzliches wird gezeigt, Zugeständnisse gemacht, Ereignisse in ihrer
zeitlichen Reihenfolge erzählt. Solche und weitere rhetorische Mittel verknüpfen sich, Aussa-
ge für Aussage, zu einem Text. Ein solcher Text ist kohärent und unterscheidet sich unter an-
derem dadurch zu einer losen Sammlung einzelner Sätze. Die Kohärenzstruktur eines Textes
kann analysiert werden — man spricht hier von rhetorischer Analyse. Allgemein angenom-
men werden rhetorische Relationen, die zwischen Textabschnitten – zumindest satzwertige
Phrasen – gelten. Auf diese Weise kann eine Baumstruktur von rhetorischen Relationen ge-
bildet werden. Eine der einflussreichsten Theorien, Rhetorical Structure Theory, wurde von
Mann & Thompson (1988) entwickelt. Sie sagt zwei Typen von rhetorischen Relationen vor-
aus: hypotaktische und parataktische Relationen. Hypotaktische Relationen gelten zwischen
zwei Textabschnitten, von denen einer als Nucleus, der andere als Satellit ausgezeichnet
wird. Der Nucleus trägt die zentrale Bedeutung, auf die weitere Relationen (auf höherer
Baumebene) verweisen können. Der Satellit ist in seiner Bedeutung optional. Parataktische
Relationen gelten zwischen zwei oder mehr gleichwertigen Textabschnitten.

Rhetorical Structure Theory (RST) wurde in der Sprachverarbeitung zunächst als zugrun-
deliegendes Modell zum Generieren natürlichsprachlicher Texte eingesetzt, im Besonderen,
um Entscheidungen über Diskursmarker zu treffen (Scott & Sieckenius de Souza, 1990;
Rösner & Stede, 1992; Hovy, 1993). Die wichtigste Anwendung in der rhetorischen Analyse
liegt im Verarbeiten großer Dokumentmengen, insbesondere in der Zusammenfassung von
Dokumenten. Bisherige Systeme basieren überwiegend auf dem Erkennen von Diskursmar-
kern anhand Contraint-orientierter Diskursmarkerlexika (Corston-Oliver, 1998c) und auf
einer formalen Analyse der Eigenschaften rhetorischer Struktur (Marcu, 1996). Lernende
Systeme treffen Entscheidungen über den inkrementellen Strukturaufbau aufgrund eines
Sprachmodells, das mit Hilfe von strukturellen A-priori-Annahmen durch die Beobachtung
von Oberflächenmerkmalen generiert wird (Marcu, 2000).

Andere Theorien im Umfeld rhetorischer Analyse sind dynamisch (Grosz & Sidner, 1986;
Grosz et al., 1995) und kennen saliente Konzepte an spezifischen Diskurspositionen Kamp
& Reyle (1993).

Diese Arbeit widmet sich der Frage, wie rheorische Relationen aufgrund von Oberflächen-
merkmalen erkannt werden können. Welche rhetorische Hinweise sind im Text verborgen?
Sind die allgemein angenommenen und verwendeten Textmerkmale tatsächlich relevant, d.h.
tragen sie zur Erkennungsleistung bei?

Wenn Texte manuell rhetorisch analysiert werden, resultieren häufig ambige Analysen
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oder Entscheidungen, die nicht mit Sicherheit getroffen werden können. Carlson et al. (2001)
erreichen bei ihrer Korpus-Sammlung eine Übereinstimmungsrate (Kappa-Koeffizient) von
0.8, was zeigt, dass eine Reihe von rhetorischen Relationen unterschiedlich durch die Anno-
tatoren interpretiert werden. Ähnlich verhält es sich bei automatisierten Analysesystemen.
Zahlreiche Relationen werden nicht signalisiert. Nahezu alle Signale (“wenn”, “als”, “aber”,
“während”) sind hochgradig ambig. Um potentielle Signale zu erkennen, sind verschiede-
ne Ebenen linguistischer Analyse nötig. Diese inkrementell annotieren zu können ist ein
wesentlicher Faktor für die praktische Realisierbarkeit dieser Systeme.

URML, ein Format zur unterspezifizierten Repräsentation rhetorischer Analysen Mit
“Underspecified Rhetorical Markup Language” (URML) stellen wir einen neuen XML-
basierten Formalismus vor, der eine elegante inkrementelle Annotation inspesondere rhe-
torischer Daten erlaubt. Das Paradigma des “Parsewaldes” erlaubt die effiziente Unter-
spezifizierung von Strukturbäumen. Im Parsewald wird jeder Knoten (d.h. jede Instanz
einer Relation) dargestellt, nachdem er analysiert und bewertet wurde. Relationsargumente
(Nuclei, Satelliten) werden als Referenzen angegeben. Alternative Relationen können ne-
beneinander existieren. URML wird im vorgestellten System als Repräsentation sowohl des
Korpus, als auch zur intermediären Serialisierung von Analyseergebnissen eingesetzt. Der
Potsdam-Korpus (Kapitel 3) wie auch der Korpus in Carlson et al. (2001) werden in URML
dargestellt. Vollständige Analysen können automatisch in Druckqualität visualisiert werden
(Anhang C).

Korpora Zwei rhetorisch annotierte Korpora dienen dem Training und der Auswertung
unseres Analyseansatzes. Der große, englischsprachige Korpus von Zeitungstexten des Wall
Street Journal wurde in Carlson et al. (2001) vorgestellt. Ferner erstellen wir einen eige-
nen, deutschsprachigen rhetorischen Korpus (Kapitel 3), der 173 rhetorisch annotierte Zei-
tungstexte enthält. Als Grundlage der Annotation verwenden wir eine Untermenge der in
der ursprünglichen Rhetorical Structure Theory postulierten Relationen. Die Annotationen
wurden jeweils durch einen zweiten Annotator validiert.

Automatische rhetorische Analyse Wir beschreiben die Architektur eines Analysesystems,
das auf Support-Vektor-Klassifizierern (Abschnitt 5.4) aufbaut. Diese Klassifizierer treffen
Mikro-Entscheidungen über die Anbindung, rhetorische Relation und Nuklearität von Kon-
stituenten oder Teilkonstituenten. Diese Entscheidungen werden aufgrund verschiedener
Oberflächenmerkmale getroffen. Wir motivieren die Auswahl der Merkmale zunächst lin-
guistisch und aufgrund bekannter rhetorischer Stilformen des journalistischen Textgenres.
Zur Klassifikation müssen Paare von Textabschnitten in ein strukturell konstantes Muster
von Merkmalen (Merksmalsvektor) überführt werden (Abschnitte 5.3.2,5.3.3).

Wir trainieren ein Ensemble von binären SVM-Klassifizierern, die eine Bewertung über
die Konfidenz in die eigene Entscheidung abgeben können. Die beste Entscheidung – in der
Bewertung der Klassifizierer – wird als Ergebnis übernommen. Wir beschreiben außerdem
einen Algorithmus, der in zwei Phasen rhetorische Strukturen aufbaut (Abschnitt 5.3.4):
Zunächst wird der Suchraum aufgrund lokaler Entscheidungen eingeschränkt (Beam-Suche).
In der zweiten Phase können nicht-lokale Eigenschaften berücksichtigt werden: Jeder Knoten
in der angenommen rhetorischen Struktur wird in seinem Kontext erneut evaluiert, so dass
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ganze Analysen bewertet werden können. Das System wählt die bestbewertete.

Evaluation Wir evaluieren das vorgestellte Analysesystem mit Schwerpunkt auf die wich-
tigste und schwierigste Klassifikationsleistung: Das Zuweisen einer rhetorischen Relation zu
zwei oder mehr bekannten Textabschnitten. Das System erreicht eine Erkennungsleistung
von 61.8 Prozent im englischsprachigen Korpus bei einer Basisleistung (baseline) von 33.6
Prozent, die sich aus der Zuweisung der häufigsten Relation ergibt. (Marcu, 2000) erreicht
eine Präzision von 57.9 Prozent bei der Erkennung von Relationen bei perfekter Segmen-
tierung. Dieser Wert ist allerdings nur bedingt vergleichbar, unter anderem weil er sich auf
einen anderen, nicht veröffentlichten Korpus bezieht. In der Evaluation des Beitrags einzelner
Oberflächenmerkmale zum Gesamtergebnis kann für Diskursmarker und für Interpunktions-
zeichen ein signifikanter, nicht-redundanter Beitrag zur Erkennungsleistung gezeigt werden.
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