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Abstract
Most text displays an internal coherence structure, which can be analyzed as a tree
structure of relations that hold between short segments of text. We present a machine-
learning governed approach to such an analysis in the framework of Rhetorical
Structure Theory. Our rhetorical analyzer observes a variety of textual properties, such
as cue phrases, part-of-speech information, rhetorical context and lexical chaining. A
two-stage parsing algorithm uses local and global optimization to find an analysis.
Decisions during parsing are driven by an ensemble of support vector classifiers. This
training method allows for a non-linear separation of samples with many relevant
features. We define a chain of annotation tools that profits from a new underspecified
representation of rhetorical structure. Classifiers are trained on a newly introduced
German language corpus, as well as on a large English one. We present evaluation
data for the recognition of rhetorical relations.

1 Introduction

Almost every author of a text has a mission: He or she wants to make an argument in
support of an opinion or of information given, giving backgrounds, reasons, or
discussing seemingly incompatible observations about the world. Hardly anyone tries
to achieve this mission by just writing down a collection of singular statements. What
readers would like to read, is a text. One of the central properties of a text is that every
one part of the text builds on another one.  A measure for this property is coherence.

There are different types of rhetorical relations that connect small chunks of
coherent text. How can we automatically recognize them? The motivation for doing
this is, that in almost all cases this seems imperative in order to understand a text.

Natural language technology has devoted increasingly more work to rhetorical
analysis. There are good reasons for this interest. Rhetorical structure influences both
natural language generation and analysis. Rhetorical parsing is an important precursor
to selecting and evaluating information, as in summarization or semantic indexing.

Linguistic accounts for rhetorical structure have the luxury to assume the
availability of world knowledge and inference in rhetorical analysis. Automated
systems resort, with quite some success, to a combination of little linguistic knowledge
and a lot of shallow processing. How far can this carry us in rhetorical analysis? How
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can such an analyzer be built and optimized? Which rhetorical clues are hidden in
text? How much can the clues help to improving recognition performance?

A contribution to an answer to these questions will not only provide better
document analysis techniques. It might also clarify our intuitions about style and the
rhetorical tricks in natural language communication.

2 Accounts for Rhetorical Structure

My approach is informed from various fields in rhetorical analysis, parsing and
machine learning. In the following, I will describe the foundations of rhetorical text
analysis.

2.1 Rhetorical Structure

The work on Rhetorical Structure Theory (RST; Mann&Thompson, 1988) builds on
tree-like structures that represent rhetorical relationships within the text. Among the
children of each tree node, rhetorical relations hold. The theory defines a set of
relations that can hold between given spans of text. Common relations include
ELABORATION, which is defined as one span that gives additional information
regarding the facts presented in the other, and CONTRAST, which is defined as the
contents of two or more spans being presented as incompatible (Figure 1).

Since the relations were defined to reflect coherence phenomena, their definitions
are not constrained to refer to properties from classical linguistic or computational
processing levels. Constraints based on meaning of discourse segments and on world
knowledge interact with the presumed writer's or speaker's intentions. In RST, each
text span takes on one of two roles in a relation: it may be a nucleus or a satellite.
Nuclei are considered essential to the understanding of the text. Satellites contribute
additional information. The relations that hold between spans may be either paratactic
or hypotactic. Paratactic relations connect two or more equally weighted spans of text
and assign the same role to each of them. Hypotactic relations hold between one
nucleus span and one satellite span. The idea of relations to hold between text spans
has become a paradigm. Trees of relations are also a common observation in texts.
Regarding the relations, the theory never claimed that this set be closed.

The tree-structured analysis seems to build on prevalent rhetorical relations: this
suggests there is, even though many analyses can be drawn from a text, only one
structure that is faithful to the writer's intentions. It may be questioned whether there is
a “primary rhetorical intention” (Grosz&Sidner, 1986). In the approach shown here,
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we derive a rhetorical interpretation that most likely matches the writer's intention.
However, the algorithm can output several interpretations, along with their score.

Figure 1: An example analysis, translated from the German corpus.

2.2 Rhetorical parsing

The Rhetorical Structure Theory Analyzer RASTA (Corston-Oliver, 1988) identifies
rhetorical relations in text. It looks at various clues from syntactic and partial semantic
analyses. Syntactic analysis is used to eliminate ambiguities, where the discourse
function of a phrase depends on its syntactic context. RASTA defines necessary and
contributing criteria for each discourse relation.

Marcu (2000) discusses several methods of parsing. His method is driven by
automatically derived or manually defined rules. For each discourse marker, these
rules state the distribution of nucleus and satellite (left/right of marker), the relations
that can be signaled, and the size of textual unit. Relations are, alternatively, also
hypothesized according to word co-occurrence. Marcu&Echihabi (2002) investigate
the unsupervised learning of classification decisions. Large quantities of sentences are
extracted automatically by applying search patterns to corpora.
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3 URML, an XML-based standard for rhetorical annotations

3.1 Motivation

With the rise of machine learning and parsing algorithms that detect rhetorical
structure and evaluate the results of manual or automatic annotation, it became clear
that corpus data should be easy to read by machines and humans. For this reason, the
SGML class of annotation formats (a super class of XML) has become increasingly
popular in linguistics and, in particular, in rhetorical theory (Rehm, 1998; Lobin, 1999;
O’Donnell, 2000).

Systems that perform rhetorical analysis often employ a tool-chain architecture.
Step-by-step, they add information, narrowing down search-space. An underspecified
representation is needed as interface between the tools. Similarly, manual annotation is
not necessarily uniform. Several valid analyses may be drawn for a text and need
eventually to be represented in a corpus.

Our solution to these issues is Underspecified Rhetorical Markup Language
(Reitter&Stede, to appear). It is an XML based data format that is extensible, readable
and writable with standardized methods. It makes few, yet well-defined assumptions
about a rhetorical theory that predicts relations to hold between spans of text, but
allows for disjunctive and under-specified analyses.

3.2 Rhetorical annotation in URML

Individual documents consist of minimal discourse units, followed by relation nodes
explained below. When analysis information is added to the raw data, we want to
preserve the original information wherever possible (especially in the light of the
incremental rhetorical parsing we are developing; see below). Thus, all information
used in the analysis process is stored in the corpus in a persistent fashion.

URML uses a referential annotation system instead of in-situ markup, which would
not separate segmentation and relations, and which would impose a specific theory on
all tools involved. Every node of a discourse tree represents one relation: either a
hypotactic one (one nucleus, one satellite) or a paratactic one (several nuclei). Nodes
are indexed and reference each other to express references to the according text spans.
In the following example, the identifiers 7B, 7C, 7D refer to minimal discourse units
(cf. Fig. 1).

<hypRelation type="concession" id="7L">
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<satellite id="7B" />
<nucleus id="7C" />

</hypRelation>
<parRelation type="contrast" id="7M">

<nucleus id="7L" />
<nucleus id="7D" />

</parRelation>

This syntax provides an elegant way to underspecify annotations by leaving out tree
nodes or by stating possible disjunctive alternatives as sets of nodes. Also, scores may
be mentioned for a node to indicate a preference or the result of some heuristics. If the
specific relation between two spans is unknown, a relation tag can be used without
the type attribute.1

In contrast to semantics-based representations (Schilder, 2002), URML refers to
textual data. It implicitly states linear precedence. Tree nodes in an analysis state
immediate dominance; underspecified dominance situations have to be explicitly
stated with concurrent tree nodes. This keeps annotations simple enough to work with
them both manually and automatically.

3.3 Binary relations

Our annotation scheme represents binary relations and assumes that only each nucleus
is connected to only one nucleus. This departure from the original theory is not such a
major step as it may appear, since the nucleus is known to contribute the essential
meaning in comparison to the satellite, and that the nuclearity of a multi-satellite
schema can be preserved in a hierarchical binary-branching structure.

Empirical evidence we gained in the collection of the Potsdam Corpus supports this
restriction. Annotators could always find a sufficient binary interpretation. The choice
between the two binary possibilities for a two-satellite-one-nucleus schema was
usually made from referential clues. In the LDC corpus, only 9 out of 17962 relations
share a nucleus with others of different type.

Our format defines a symbolic system that may represent ambiguities. The axioms
that define a well-formed tree analysis are left open to the client application. At the
end of a typical analysis process, we would like to represent such a well-formed
structure. It can be identified as such in URML.

                                                            
1 A “document-type definition” grammar describing the format of documents, rhetorical and
morpho-syntactical annotations can be obtained from http://www.ling.uni-potsdam.de/cl/rst/.
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4 Rhetorical Analysis

The automatic detection of rhetorical structure poses a series of challenges. First and
foremost, a deep semantic analysis with sufficient coverage seems unfeasible, so, as a
design decision, we will concentrate on the integration of various surface cues. These
rhetorical signals are found on various linguistic levels (morphosyntax, punctuation,
lexical choice, discourse marker). Unfortunately, there is is no one-to-one mapping
between signals and rhetorical relations. For instance, even though can signal either a
CONCESSION or a CONTRAST

2 relation. Also, a dash between two segments is no clear
sign for an ELABORATION; instead, a CONCESSION could hold.

As a research hypothesis: language combines various surface cues to signal
rhetorical structure. We will determine how far these clues can be used to derive
rhetorical relations and, indirectly, structure.

Besides the cues, we need to define the analyzer architecture. We see parsing as a
series of classification decisions. As the chart parser proceeds segment by segment, it
tries to hypothesize rhetorical relations between the tree nodes that have been found.
Here, we need to find one optimal or several good decisions, based on rhetorical
signals. Classification instances (section 4.1) provide a uniform, local unit, in which
signals can be observed. Potential signals are collected from each such unit as features
(section 4.2). We can then classify each classification instance through a mathematical
machine learning model, support vector machines (section 4.3). We finally sketch out
a parsing algorithm based on classifiers (section 4.4).

4.1 Relations split up in classification instances

The statistical classifiers observe linguistic properties that occur in the text spans. A
feature is a function that assigns a scalar value to a linguistic pattern, which is a piece
of text. Features need to be enumerable; the set of features must be finite. Features are
always applied to a structurally equivalent context. We define this context with a
simple intermediate data structure, the classification instance. Each paratactic relation
node is split up in several classification instances; hypotactic relation nodes are
converted to one classification instance.

                                                            
2 In a hypotactic CONCESSION, the writer acknowledges an (apparently) incompatible fact in
the satellite, but claims that the fact in the nucleus holds nevertheless. For items in a
paratactic CONTRAST relation, the writer builds on the incompatibility of the facts.
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A transformation function m  maps each relation <i, r, b, n> onto a set of
classification instances. i is a unique index, r is the relation, b  the list of indexes
identifying satellites and nuclei and n identifies the nucleus in hypotactic relations. A
classification instance <r, d, g> holds a list of text span indexes d and a single span g.
The role of d and g differs in hypotactic and paratactic relations. For hypotactic
relations (assumed to be binary) d contains the nucleus and g represents the satellite.
(Note that the linear precedence of the text spans is encoded as feature.) For all
hypotactic r:

for all paratactic r:

Nota bene: The classification instances can not only be derived from existing relations,
but also from hypothetical parsing edges during analysis.

4.2 Transforming classification instances into feature vectors

In each classification instance, we check the same set of features. Remember that a
feature is a function to check a single property of the classification instance. We
distinguish local features, which hold only information that is available within a
classification instance, and non-local features, e.g. the depth of embedding or concept
introduction. In the following, we describe the different hard-coded templates for
features, which are instantiated using the training corpus to form a finite set of
features.

Cue words and pronouns: The strongest clues consist of discourse markers. As
discourse cues tend to be found at the beginning of a text span (“However,”, “Thus”)
or at its end (“, too” and punctuation), the relative position of a cue within the segment
considered is encoded in the feature value. For this feature template, we demonstrate
its instantiation: We define a class of features CUEw,b,s(c) that return a positional
indicator for a cue word w within the first (b=0) or second (b=1) half of LEFT(c) (s=0)
or RIGHT(c) (s=1). The w  are automatically selected from the words in the training
corpus according to the part-of-speech categories. The resulting cue features are the
CUEw,b,s for all w, b and s. Introduction of concepts: The way noun phrases occur is
specific to discourse boundaries. In journalistic texts, definite noun phrases with a
common noun (NN, “the chancellor”, “das Restaurant”) tend to refer to a concept that
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was introduced before. In contrast, indefinite noun phrases do not refer in a strict
semantic sense. Punctuation: The occurrence of a colon, a dash, a question mark and
other punctuation marks is noted. Part-of-Speech categories: The part-of-speech
categories of the words at the borders of segments may help disambiguate the type of
relation (sentential). Lexical similarity: We use the similarity measure defined in
topic chaining research (Hearst 1997) to reflect the semantic similarity of the two text
spans considered. Span lengths: We hypothesize that some connectives have an
argument-length-dependent distribution. Intuitively, a CONTRAST relation will rather
have a short satellite, at least, related to the total length of the text. Authors are
expected to focus on their main argument, not on counter-arguments. Thus, the ratio of
the text span lengths (in words) is used as feature.

These feature templates are motivated by linguistic knowledge and, for some
features, simple corpus-based evaluations that showed a significant class distribution.

4.3 Support Vector Machine learning

The classifiers base their decisions on knowledge that is automatically acquired from a
set of sample documents. During training, the machine-learning algorithm determines
general characteristics of the samples that belong to each assigned category, in our
case: the relations. Among the frameworks available for classification learning,
support vector machines (SVM; Vapnik, 1995) have shown to deliver superior results
in many applications. The following factors justify the use of SVMs in our case.

– It’s a pattern recognition problem, so we deal with multi-class classification.
– We observe features that are inter-related, and exact qualitative and quantitative

feature inter-dependence is not known. Naïve Bayes-based algorithms, a
standard in statistical language processing, can only approximate the ideal
classification solution in this case. SVMs are designed to solve highly non-linear
problems.

– We incorporate a large number of features (>5000). For SVMs, the
dimensionality of the feature space is not a variable in training time complexity.

– Compared to other machine learning tasks, we train on a small to medium sized
set of examples (<10000). State-of-the-art training algorithms handle small
training sets within reasonable time.

Support vector machines are based on two ideas. Large-margin separation: We
position all training samples xi, in feature space according to their assigned feature
vectors. A (linear) classifier is defined as a hyper-plane w Œ  RN, b Œ  R (a plane of
dimensionality (N-1), if N features are defined) that separates data points. The hyper-
plane should equally and orthogonally divide the shortest connection between the two
hulls of the class-related data points (Figure 2). Learning involves finding a solution to
the following solvable optimization problem:
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N.B.: only the vector product is used in the above formula and that the number of
features is not a factor in the optimization problem. Choosing the zi,  means identifying
a subset of all data vectors that is closest to the hyper-plane. Collobert&Bengio (2001)
report an efficient training algorithm for SVMs that is used in our approach.

Figure 2: large-margin separation in the separable case

The kernel trick: Most data cannot be separated by means of a linear separation
function. A kernel transforms the data from a non-linear into the linear feature space,
where it can be separated by a hyper-plane. The kernel function we use is a radial basis
function:

The function maps the vectors x and y (from non-linear space) directly to a scalar
value that represents the dot product of the vectors in the linear target space. We avoid
calculating the dot product, which allows for an efficient implementation.
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Solving means to calculate, which side of the hyper-plane a data point is located on
as well as its distance to the hyper-plane (confidence). Since we need to solve a multi-
class problem, we train a binary SVM classifier for each class and chose the solution
for which the according classifier assigns the highest confidence score.

4.4 Parsing algorithm

The classifiers described are already able to make different kinds of useful decisions:
Rhetorical relation: this decision comes directly out of running the multi-class
classifier on a classification instance. Nuclearity (which text span is the nucleus?): For
hypotactic relations, we run each polychotomizer twice, once for each possible
distribution of roles (satellite/nucleus).  Finally, we can determine attachment
preference for a text span by scoring alternate hypotheses. Those decision types are all
integrated when it comes to rhetorical parsing.

Statistical-based rhetorical parsing borrows some ideas from rule-based chart
parsing. We store all analyzed constituents (i.e. relation nodes) in a chart in URML
representation, thus avoiding double work. Because we examine the use of non-local
features, we need to deal with non-compositionality during parsing. The theoretical
solution to this is to generate all possible trees and evaluate each of them as a whole.
To speed things up, our parsing algorithm employs first local optimization and beam-
search, then global optimization.

5 Evaluation

The evaluation demonstrates the performance of support vector classifiers as used in
the parsing process. As training and test data, we use two rhetorical corpora in English
and German.

5.1 Corpora

5.1.1 The LDC discourse treebank

The RST annotated collection of 385 English language newspaper articles presented
by Carlson et al. (2001) is, as of this writing, the most extensive RST corpus. To



11On rhetorical analysis with rich-feature support vector models

prepare for rhetorical analysis, the corpus was converted to URML and part-of-speech
tagged. All relations were converted to 16 more general relations according to a
hierarchy used during corpus collection. The notion of nuclearity in the LDC corpus is
more explicitly defined than in original RST, making additional relations necessary,
including ones that occur in hypotactic and paratactic form. These were converted to
paratactic ones in order to make evaluation possible.

5.1.2 Collecting the Potsdam Corpus

We chose a series of German language news commentaries, published recently in a
local newspaper, the Märkische Allgemeine Zeitung. Most of the texts concern local
issues, some address national and international issues. Average document length is
28.6 sentences. We had good reasons for that choice because of the following general
design decisions. Texts should...

– expose a clear argumentative structure,
– be short enough to allow annotators to quickly comprehend their overall

structure of a document and their argumentative goals, while also long enough to
expose the kinds of relations that possibly hold between larger spans of texts,

– be coherent,
– belong to the same genre of text,
– be written in a language that complements efforts in other languages.

We decided to automatically segment the documents into minimal discourse units,
based on shallow syntactic features. Clause borders are recognized by punctuation and
finite verbs. Automatic segmentation maintains a clear standard for segmentation and
allows us to examine pure rhetorical relations and rhetorical structure. The two
annotators received training with focus on the original relation definitions as given by
Mann&Thompson (1988). After 30 texts were annotated, annotations were reviewed
and, after a new training session, re-annotated. Annotation was carried out using the
graphical annotation tool RSTTool 3.1 (O’Donnell, 2000). We chose 15 hypotactic
and 5 paratactic relations along the lines of traditional RST. They can be grouped into
11 more general classes. The annotators completed 173 documents. As a first step
towards validation of the data, annotators, they switched datasets and cross-validated
all documents.
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Table 1: Performance for English and German

5.2 Performance analysis

The rhetorical analysis algorithm was subject to extensive evaluation on several levels.
In the following, we focus on a singular task that is crucial to rhetorical analysis: The
assignment of a relation to hold between known spans of text.

Classifiers were trained on 240 documents and evaluated on 50 documents from the
LDC corpus. The tests are 2-fold cross-validated. In this respect, the multi-class
accuracy of our implementation is 61.8 percent. Semi-automatic regression tests for
parameter estimation of the SVM training algorithm and the SVM kernel were carried
out on different test partitions. For the Potsdam corpus, accuracy is significantly lower
(39.1 percent, Table 1). This can be explained by the fact that the training partition of
the LDC corpus yielded an average of 7976 classification instances, while only 1943
training samples were derived from the Potsdam Corpus. With this amount of data,
classification accuracy for the LDC corpus is 56 percent (Figure 3).

We turn to a comparison of the results to a state-of-the-art approach. The relevant
measure used Marcu (2000) is labeled recall (57.9) & labeled precision (56.3) for
parsing results with assumed perfect segmentation. Our tests looked at structurally
correct relations only, thus, labeled precision is the relevant figure to compare to.

To put the accuracy figures into perspective, we calculate a baseline value. The
baseline is established by having the classifier ensemble always chose the most
common relation, ELABORATION. It is 33.6 percent for the corpus used. As a
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theoretical upper bound for analysis performance, we can consider inter-annotator
agreement in corpus collection efforts. Carlson et al. (2001) report kappa coefficients
ranging from 0.62 to 0.80. Here, a kappa value of 0 indicates random agreement, 1
perfect agreement. The agreement was reached only after rigorous training and at the
end of their corpus collection effort. Even then, as the kappa value indicates, there
were several instances of disagreement among human annotators.

Our analyzer achieves its accuracy with a well-defined classification method based
on large-margin separation and a sufficiently large data-set. Our English evaluation
corpus is, though presumably similar, not the corpus used in Marcu’s experiments. As
the density of rhetorical signals and the distribution of rhetorical relations differ
greatly between text genres and corpora, quantitative comparison seems difficult.
Nevertheless, the accuracy rate indicates excellent performance.

Examining the classification results for specific relations (Table 1), we found that
some harder problems, such as detecting the less frequent and ambiguously signaled
CAUSE/RESULT relations, are not solved well by the classifier ensemble. Other
rhetorical relations, however, are recognized with relatively high precision/recall, e.g.
ELABORATION/SPECIFICATION and ATTRIBUTION. Little surprisingly, these are high-
frequent relations in both corpora. More important than that, cue phrases are unlikely
to signal these relations. ATTRIBUTION and ELABORATION can be distinguished with
information from the punctuation feature.

Indeed, an experiment leaving out single features shows that punctuation is, after
cue phrases, the feature that contributes most to overall classification accuracy.
Provided that support vector classifiers do a good job integrating relevant features and
that we use a broad variety of heuristics, the findings call for a more informed
detection of features. We have not examined the computationally expensive use of a
semantic net to achieve a better topic similarity measure. Even better decisions might
be drawn from a general model that sees the choice of connectives as result of a
represented underlying structure of referents.

The learning curve (Figure 3) shows how the performance of the relation
assignment algorithm increases with the number of training samples (classification
instances). It converges with the maximum number of training samples used, thus the
corpus seems to be large enough for this kind of training task. The 18 binary SVM
classifiers can be trained on 150 documents in reasonable time (216 min on 1 Mhz G4-
CPU).
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Figure 3: Learning curve of the rhetorical classifiers: number of training samples vs.
classification accuracy

6 Conclusion

Most importantly, we have shown a framework for the rhetorical analysis of texts. In
this task, support vector classifiers perform exceptionally well. An analysis of the
performance of the features shows that many of the clues, commonly assumed to be
correlated to rhetorical relations, cannot not significantly contribute to the detection of
rhetorical relations. The algorithms shown are able to output several likely analysis in
a compact representation.

Underspecified Rhetorical Markup Language is a flexible, XML based format that
provides interfacing between tools in rhetorical analysis and corpus annotation. Data
can be visualized using a separate package for LaTeX. As a stand-alone data format, it
URML applied in the collection of a novel corpus of news commentaries.
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