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Abstract

We simulate the evolution of a domain vocabulary in small communities. Empirical data show that human communicators can evolve
graphical languages quickly in a constrained task (Pictionary), and that communities converge towards a common language. We propose
that simulations of such cultural evolution incorporate properties of human memory (cue-based retrieval, learning, decay). A cognitive
model is described that encodes abstract concepts with small sets of concrete, related concepts (directing), and that also decodes such
signs (matching). Learning captures conventionalized signs. Relatedness of concepts is characterized by a mixture of shared and individ-
ual knowledge, which we sample from a text corpus. Simulations show vocabulary convergence of agent communities of varied structure,
but idiosyncrasy in vocabularies of each dyad of models. Convergence is weakened when agents do not alternate between encoding and
decoding, predicting the necessity of bi-directional communication. Convergence is improved by explicit feedback about communicative
success. We hypothesize that humans seek out subtle clues to gauge success in order to guide their vocabulary acquisition.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Languages evolve: like biological systems, they undergo
mutation and selection as they are passed on between
speakers and generations. Human communication as well
as its biological analog evolve under environmental con-
straints. Fitness of a set of linguistic devices is, thus, also
a function of the cognitive facilities. In this paper, we
assume that the acquisition and retention of linguistic facts
in memory is a crucial factor determining how languages
are developed by communities. We use a cognitive architec-
ture to provide an independently validated model of
human memory to simulate the evolutionary process that
produces a crucial part of the communication system: the
vocabulary.
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Recent models of dialogue describe how interlocutors
develop representation systems in order to communicate;
such systems can, for instance, be observed using referring
expressions that identify locations in a maze. Experiments
have shown that referring expressions converge on a com-
mon standard (Garrod & Doherty, 1994). Pickering and
Garrod’s (2004) Interactive Alignment Model suggests that
explicit negotiation and separate models of the interlocu-
tor’s mental state are not necessary, as long as each speaker
is coherent and adapts to his interlocutors, as speakers are
known to do on even simple, linguistic levels (lexical, syn-
tactic). This shifts the weight of the task from a sophisti-
cated reasoning device to the simpler learning mechanism
of the individual.

Some evolutionary models see the transmission of cul-
tural information as a directed process, in which information
is passed only from the older to the younger generation.
Other models explain the emergence of language as a contin-
uous process within generations. This process may be
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modeled as convergence towards the bias set by innate learn-
ing and processing systems of the individual, but it can also
be seen as the result of ongoing changes that interact with
the cultural environment of the collaborating language
users. There, meaning–symbol connections spread between
collaborating agents and ultimately converge on a predomi-
nant one. It is the dichotomy between individual and com-
munity-based learning that motivated the experiments by
Fay, Garrod, Roberts, and Swoboda (2010) and Garrod,
Fay, Lee, Oberlander, and Macleod (2007), which serve as
the basis for the model presented here.

In the society of cognitive agents in Fay’s study and in
our experiments, agents adapt their communication system
collaboratively to the environmentally shaped and cogni-
tively constrained needs of each individual. With our
model, we aim to use a cognitive framework – specifically
a memory model – to reflect processes in the individual that
give rise to emergent convergence and learning within the
community. By this, we acknowledge the fact that cultural
evolution is constrained by individual learning; each agent
learns according to their cognitive faculty (cf., Christiansen
& Chater, 2008). The possibility of cultural language evolu-
tion between generations has been supported by computa-
tional simulations (e.g., Brighton, Smith, & Kirby, 2005;
Kirby & Hurford, 2002, chap. 6). Kirby and Hurford’s
(2002) Iterated Learning model of language evolution
describes vertical development of a language system by
feeding developed linguistic signs or conventions back into
another agent. Thus, it abstracts away from the processes
within the community that forms a generation, yet does
not rely only on emergence through biological evolution
of the system that processes language.

The individual language faculty as a result of biological
evolution and adaptation to cultural language has been the
focus of psycholinguistic models proposing specialized
mechanisms (theChomskian viewpoint). While syntactic
theory has long relied on production rule systems, more
recent lexicalist approaches (Jackendoff, 1975) also integrate
well with theories of general cognition (ACT-R: Anderson
et al., 2004; SOAR: Laird & Rosenbloom, 1987). In this
sense, the model presented here reflects the development of
a common vocabulary, which we see as prototypical for that
of the lexicon, the central component of a language.

Indeed, the multi-agent model discussed in the present
paper sees part of the linguistic process as an instantiation
of general cognition: the composition and retrieval of signs
follows general cognitive mechanisms. Adaptation accord-
ing to experience is determined by human learning behav-
ior. Simulation in validated cognitive frameworks allows
us to constrain the learning process by the bounds of
human memory.

Griffiths and Kalish (2007), for instance, model lan-
guage evolution through iteration among rational learners
in a Bayesian framework; the purpose of the present pro-
ject is to tie the simulation of language evolution to a con-
crete experiment and a more process-oriented cognitive
architecture than the Bayesian framework. ACT-R’s learn-
ing mechanisms add a notion of recency (decay) to the
Bayesian view. Work on language processing has modeled
the relationship to ACT-R memory retrieval, both for lan-
guage comprehension (Ball, Heiberg, & Silber, 2007; Budiu
& Anderson, 2002; Lewis et al., 2005; Stocco & Crescentini,
2005) and for language production (Reitter, 2008).

We introduce a cognitive model that simulates a partic-
ipant in the experiment; multiple models interact as a com-
munity of participants. The purpose of this paper is to
observe how a compositional vocabulary is created
between collaborating agents in a computational cognitive
simulation. Like Smith, Brighton, and Kirby (2003), we
represent meaning–signal mappings using associations
between memory items to create compositional signs, but
we augment this model of pre-existing knowledge with
one of explicitly encoded and retrievable domain knowl-
edge. Other simulations have shown that cultural evolution
leads to compositional languages (Kirby & Hurford, 2002).

We will show that the model demonstrates learning
behavior similar to the empirical data. We assume these
agents share a common reference system initially, display
cooperative behavior and adopt mixed roles as communi-
cators. Therefore, we explore different scenarios that test
the necessity of our preconditions, in particular the fact
that each agent can be both on the sending and the receiv-
ing end of the communications. The underlying question is
whether dialogue (producing and comprehending lan-
guage) is necessary for participants to establish joint com-
munication. In search for factors that influence community
convergence, we also examine the effect of initial common
ground between agents and the role of the structure of the
network that describes each agent’s knowledge. Specifi-
cally, we present results suggesting that the specific
power-law distribution found in ontologies is beneficial to
the within-community convergence.

2. The task

The Pictionary experiment (Garrod et al., 2007)
involves two participants, a director, who is to draw a
given meaning from a list of concepts known to both par-
ticipants, and a matcher, who is to guess the meaning.
Director and matcher do not communicate other than
through the drawing shared via screens of networked
computers; the matcher is able to draw as well, for
instance to request clarification of a part of the picture.
Each trial ends when the matcher decides to guess a con-
cept. Garrod et al.’s set of concepts is divided into five
broad categories (e.g., actor, building); the concepts
within each are easily confusable (e.g., drama, soap
opera). Each game involves several trials, one for each
concept on the list, in randomized order. The director
is not informed of the guess made by the matcher, and
neither participant receives feedback about whether the
guess was correct. Participants switch roles after each
trial. Participants play many games so that the emergence
of consistent drawings can be observed.
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We implement the experiment in a form applied by Fay
et al. (2010), where 16 concepts (plus 4 additional distrac-
tors) were used in a design with two conditions. In the iso-

lated pair condition, participants were split into the same
pairs throughout. They played seven rounds of six games
each with the same partner. Each game consisted of 16 tri-
als, one for each target concept (in random order). In the
community condition, participants changed partners after
each round. Each community consisted of eight partici-
pants. The pattern of pairings was designed so that after
the first round, four sub-communities existed, and after
the second round, two sub-communities. After round four,
the largest separation between partners was 2 (i.e., each
agent has interacted via another one with every other
agent); it was 1 after round seven. Fay et al. evaluated
the iconicity of drawings, showing that isolated pairs devel-
oped more idiosyncratic signs, while the signs emerging
within communities were more metaphoric (i.e. deducible)
and easier to understand for new (fictitious) members of
the language community. As idiosyncrasy increases with
each drawing–recognition cycle, but resets (to some degree)
when communication partners change, communities may
end up evolving similar idiosyncrasy once every pair of par-
ticipants played the same number of games.

The simplest measure and the one crucial for the evalua-
tion of models like ours is identification accuracy. Fay et al.
found that their participants generally converged quickly to
a common meaning system. Convergence reached a ceiling
of around 95% in both community and isolated–pair condi-
tions. Changing interaction partners from round to round,
as in the community condition, reduced accuracy during the
initial rounds; however, the community reached similarly
good ID accuracy as the isolated pairs after just a few
rounds. We will use the development of ID accuracy as
one way to evaluate the model.

3. The model

3.1. Architecture

ACT-R (Anderson, 2007) is an architecture for specify-
ing cognitive models, one of whose major components is
memory. ACT-R’s memory associates symbolic chunks
of information (sets of feature–value pairs) with subsym-
bolic activation values. Learning occurs through the crea-
tion of chunks, which are then reinforced through
repeated presentation, and forgotten through decay over
time. The symbolic information stored in chunks is avail-
able for explicit reasoning, while the subsymbolic informa-
tion moderates retrieval, both in speed and in retrieval
probability. The assumption of rationality in ACT-R
implies that retrievability is governed by the expectation
to make use of a piece of information at a later point.
Important to our application, retrieval is further aided
by contextual cues. When other chunks are in use (e.g.,
parliament), they support the retrieval of related chunks
(building).
The properties of memory retrieval are governed by the
activation of a chunk i that is to be retrieved. Three compo-
nents of activation determine retrieval time and probabil-
ity, all of which are relevant to our model: base-level

activation, spreading activation and transient noise:

Ai ¼ log
Xn

j¼1

t�d
j þ

Xcues

j

Sji þ �

Base-level activation (the first term of the sun) is predictive
of retrieval probability independent of the concurrent con-
text. It is determined by the frequency and recency of use of
the particular chunk, with tj indicating the time elapsed
since use j of the chunk. d indicates a base-level decay
parameter, usually 0.5. Retrieval is contextualized by cues
available through spreading activation (second term). It
is proportional to the strengths of association (Sji) of each
cue with the target chunk. While the base-level term can be
seen as a prior, spreading activation models the conditional
probability of retrieval given the available cues. Finally, � is
noise, sampled from a logistic distribution shaped by
canonical parameters, so that retrieval follows a softmax
(a.k.a. Boltzmann) selection. Ai must surpass a minimum
retrieval threshold for chunk i to be successfully retrieved.
3.2. Maintaining a communication system

A single ACT-R model implements the director and
matcher roles. As a director, the model establishes new
combinations of drawings to represent given target con-
cepts. As a matcher, the model makes guesses. In each role,
the model revises its internal mappings between drawings
and target concepts. Table 1 gives an example of the pro-
cess. In the simulations reported here, the directing model
conveys the drawings to the recognizing model without
actually producing a drawing; this recognition step is not
assumed to be a source of error. The model is copied to
instantiate a community of 64 agents, reflecting the subjects
that took part in the Pictionary experiments.

The simplest form of representing a communication sys-
tem in ACT-R memory chunks is as a set of signs. Each
sign pairs a concept with a set of drawings. Competing
signs can be used to assign multiple drawings for one con-
cept, this would create synonyms; multiple concepts can
also be associated with the same drawings, creating hom-

onyms and ambiguity. Drawings, concepts, and signs are
represented as ACT-R chunks.

To reflect semantic relationships, we need to introduce a
subsymbolic notion of relatedness. We use ACT-R’s
spreading activation mechanism and weights between con-
cepts to reflect relatedness. Spreading activation facilitates
retrieval of a chunk if the current context offers cues related
to the chunk. Relatedness is expressed as a value in log-
odds space (Sji values).

When the model is faced with the task of drawing a
given concept such as Russell Crowe (one of the concepts
in the experiment) or Hospital (as in Fig. 1) that has no



Table 1
A protocol of two model instances, conveying two target concepts. Refer
to Fig. 1 for the assumed, common knowledge base. In the first trial, the
models fail to communicate the target concept Paramedic through three
related drawings. In the second trial, they then successfully communicat-
ing concept Hospital via different drawings. The Matcher first adopts
ambiguous drawings as a domain sign for Hospital, then revises it to reflect
the better ones.

Director Matcher

Fails to retrieve domain sign for
Paramedic

Retrieves related concept:
) component drawings syringe,

doctor, emergency-vehicle
Draws components syringe,

doctor, emergency-vehicle
Requests related concept with
cues syringe, doctor, emergency-
vehicle (SDE)
) concept Hospital

Guesses Hospital
Learns domain sign Paramedic-

SDE

Learns domain sign Hospital-

SDE

Retrieves domain sign for target
concept Hospital

) component drawings sad,
house, doctor (SHD)

Verifies that Hospital is retrieved
when drawings sad, house,

doctor are activated
Draws components sad, house

and doctor (SHD)
Requests related concept with
cues sad, house, doctor
) concept Hospital

Guesses Hospital

Verification:
Requests domain sign for

Hospital

) domain concept Hospital-SDE

sad, house, doctor spread
stronger activation to Hospital
than do syringe, doctor,
emergency-vehicle

Learns domain sign Hospital-

SHD

thus, learns domain sign
Hospital-SHD

Fig. 1. Example of a small ontology with abstract concepts (spelled-out
words) and concrete ones (drawings).
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canonical form as a drawing, the model is unable to
actually draw Russell Crowe or Hospital directly. Then,
a related but drawable concept (drawing) is retrieved from
declarative memory (such as Syringe in the example).
Similarly, two more concepts are retrieved, reflecting the
desire of the communicator to come up with a distinctive
rather than just fitting depiction of the target concept.
The case of a model recognizing a novel combination of
drawings is similar; the model retrieves the concept using
the drawings as cues that spread activation, making
the target concept the one that is most related to the
drawings.

After directing or recognizing, the target or guessed con-
cept, along with the component drawings, is stored symbol-
ically in memory as a chunk for later reuse (domain sign).
These signs differ from the pre-existing concepts in the net-
work, although they also allow for the retrieval of suitable
drawings given a concept, and for a concept given some
drawings. When drawing or recognizing at a later stage,
the memorized domain signs are preferred as a strategy
over the retrieval of related concepts. The system of
domain signs encodes what is agreed upon as a language
system between two communicators; they will be reused
readily during drawing when interacting with a new part-
ner, but they will be of only limited use when attempting
to recognize a drawing combination that adheres to some-
body else’s independently developed communication
system.

3.3. Knowledge

Agents start out with shared world knowledge. Such
knowledge comprises target items from the experiment,
and concrete concepts representing the drawings. The
important element of knowledge in the model is the rela-
tionship between target items and concrete concepts (draw-
ings). The model abstracts away from the process of
manually producing a drawing, and from the linkage
between the drawing and the concept.

Knowledge is expressed as a network of concepts, con-
nected by weighted links (Sji). The distribution of link
strengths is important in this context, as it determines
how easily we can find drawing combinations that reliably
express target concepts. Thus, the Sji were sampled ran-
domly from an empirical distribution: log-odds derived
from the frequencies of collocations found in text corpus
data. In a corpus comprising several years worth of articles
that appeared in the Wall Street Journal (WSJ), we
extracted and counted pairs of nouns that co-occurred in
the same sentence (e.g., “market”, “plunge”). As expected,
the frequencies of such collocations are distributed accord-
ing to a power-law. We found that the empirical log-odds
resulting from these that form Sji = log(P(j—i)/P(j—not

i)) (Anderson, 1993) (j and i being the events that j and i
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appear, respectively) can be approximated by a Generalized
Inverse Gaussian–Poisson distribution (given in Baayen,
2001). Concepts can represent target concepts (abstract)
as well as drawings (concrete). We randomly sample all
link weights from the corpus; as a simplifying assumption,
the concepts themselves receive equal base-level activation.

Such knowledge is, however, not fully shared between
agents. Each agent has their own knowledge network
resulting from life experience. This difference is essential
to the difficulty of the task: if all agents came to the same
conclusions about the strongest representation of target
concepts, there would be little need to establish the domain
language. We control the noise applied to the link strengths
between concepts j and i for agent A ðSA

jiÞ by combining the
common ground Sji (shared between all agents) with a ran-
dom sample from the empirical WSJ distribution NA

ji in a
mixture model: SA

ji ¼ ð1� nÞSji þ nNA
ji. Then, n [0–1] sets

the proportion of noise. For Experiments 1 and 2, the noise
coefficient is set to 0.2; the effect of noise is explored in
Experiment 3.

3.4. Adaptation pressure

Notably, participants in the experiment converged to a
common sign system fairly quickly. This happened even
though there was no evident, strong pressure to do so.
Agents received no explicit feedback about the quality of
their guesses or drawings. The only weak clue to the success
of a set of drawings was whether the partner made a guess
quickly.

Invariably, the model will mistake a set of drawings for
a reference to the wrong target. Lacking a feedback loop in
this experiment, the model has no choice but to acquire
even flawed domain signs and boost their activation upon
repetition. Under these conditions, is there enough pressure
to converge? It is difficult to see how interacting partners
could ever agree on a working communication system,
given that there is no benefit for a model in choosing the
concept–drawing associations of its interaction partner.
Still, ACT-R’s declarative memory mechanism values fre-
quency and recency. As a consequence, new concept–draw-
ing mappings may override old ones, but are most
successful if they are compatible with the majority of previ-
ously chosen mappings for that concept. In other words,
agents may recognize drawings and assign the right con-
cept, but the concept–drawing combination is not as likely
to override more established, existing domain concepts that
have seen frequent use. Thus, individual interactions may
be successful task-wise, but they need not revise the estab-
lished language system.

However, the model also leverages consistency as pro-
posed in Grice’s maxims of manner, “Avoid ambiguity”

and “Avoid obscurity of expression” (Grice, 1975). In
our context, these maxims postulate, e.g., that directors
choose to draw combinations that are unique so that they
won’t be confused. To implement the maxims, the model
assumes that a given set of drawings is associated with only
one target concept, and, conversely, that a given target con-
cept is associated with only one set of three drawings. Sup-
pose, for example (Table 1), that the model associates
concept B with drawings 1, 2, 3 (short: B-123). Later on,
it comes across drawings 3, 4, 5 as another good way to
express B. In fact 3, 4, 5 serve as convincingly stronger cues
to retrieve B than do 1, 2, 3. Thus, the model not only cor-
rectly recognizes B, but also learns the new preferred com-
bination B-345. In the following rounds, B-345 will likely
shadow the alternative in a winner-take-all paradigm, since
B-345 is newer than B-123 and, thus, has stronger activa-
tion due to activation decay (noise and reinforcement
may keep B-123 as a winner for longer). The decay mech-
anism counteracts the creation of synonyms.

In evolving the domain language, the model will avoid
creating homonyms as well. Suppose a concept C is to be
drawn, and 345 are retrieved as closely related and highly
active drawings. Here, the model attempts to verify that
345 cannot be understood as any other concept than
C. As the most strongly active concept for 345 is B, these
drawings are ruled out to express C. With this mechanism,
the model is able to cheaply modify the system of signs
without extensive reasoning about the optimal combina-
tion every time a concept is added. Oliphant and Batali
(1997) call this mechanism Learning by Obverting: Such a
learning would “send for each meaning the signal that is
most likely to be interpreted as that meaning.”
3.5. Model

3.5.1. Directing

The model is given a target concept A to convey. It uses
domain signs and general knowledge to decide about three
drawings with which to convey the concept. Domain
knowledge is explicitly accessible and overrides subsymbol-
ically derived compositions. After that decision has been
made, the composed concept is committed to declarative
memory as a new or reinforced domain sign. As a conse-
quence, the model acts with consistency: once a combina-
tion has first been used to convey a concept, the model
will be more likely to use it. The director proceeds with
the following algorithm.

1. Retrieve a domain sign for A of the form A � abc.
� Verification: If successful, retrieve a domain sign B

for the same three drawings abc (B � abc). Only if
A = B, accept the domain sign A � abc and continue
with step 3; otherwise back to 1 (for a different
domain sign).
2. If no acceptable domain sign is found, use subsymbolic
knowledge to combine concepts to express related target
meanings. Using the target meaning as cue, retrieve
three drawings abc. The most active drawings are
retrieved preferentially.

3. Draw abc.
4. Learn A � abc (note use of chunk, see Section 3.1).
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3.5.2. Matching

Recognizing a drawing takes place in a similar fashion:
domain knowledge is preferred over associative guesses.
The model is given three drawings abc. It proceeds with
the following algorithm.

1. Attempt to retrieve a domain sign for abc, resulting in
C � abc.
� Verification: If successful, retrieve a domain sign of

the form C � d�f. Only if a, b, c = d, �, f, accept
the domain sign C � abc and continue with step 3.
n 
ac

cu
ra

cy

0.85
0.90
0.95 Isolated Pairs
2. If no acceptable domain sign is found, retrieve a concept
C using cues abc (spreading activation).

3. Enter C as the model’s guess.
4. Learn C � abc (note use of chunk, see Section 3.1)
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3.6. Underspecification and accountable modeling

The modeling method used to design the language con-
vergence model follows what we call accountable modeling:
we abstract away from portions of the model that are dif-
ficult to evaluate, and focus on the aspects that yield pre-
dictions and explanations of the language convergence
data. Working within the ACT-R theory, we formulate
the model with a new toolbox implementation called
ACT-UP (Reitter & Lebiere, 2010). ACT-UP reflects
ACT-R, but makes individual cognitive functions rather
than architectural modules directly available for combina-
tion by the modeler. The ACT-UP toolbox approach
allows modelers to underspecify models by implementing
a computational algorithm to cover elements that would
neither introduce nondeterminism nor carry explanatory
weight in this particular model.

The component of the ACT-R theory that is essential to
this model are cue-based declarative memory retrieval,
where cues spread activation to target chunks. We do not
rely on specific procedural rules or other forms of parallel-
ism or reinforcement learning.

3.7. Subsymbolic parameters

In the following, we briefly discuss chosen values for
ACT-R’s subsymbolic parameters. Learning in declarative
memory is governed by a decay (bll), kept at its default of
0.5. The chunk activation constant (BLC) is 2.4, and the
retrieval threshold (RT, an activation below which a chunk
is not retrieved) is �1. Transient noise is within the range
used by other models at 0.2.
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Fig. 2. Identification accuracy for isolated pairs and communities: human
data (Fay, p.c.) and model runs. 95% confidence intervals (one-tailed for
Fig. a). Partner switching (in community condition only) is indicated by
dashed lines.
4. Simulation 1: learning and convergence

In the first simulation, we evaluate whether the model
exhibits similar learning and convergence behavior, and
whether there are differences in learning between the iso-
lated–pair and community condition, as observed in Fay
et al.’s experiment. The model uses the same number of
concepts, trials and simulated participants as in the exper-
iment. 100 repetitions of the simulation were run, each with
a different, randomly sampled ontology structure; the same
100 ontologies were used for all simulations.

4.1. Results

As shown in Fig. 2b, the learning behavior differs in the
two conditions. Isolated pairs and community pairs show a
learning effect. Their respective communication systems
converge. However, unlike isolated pairs, community pairs
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display lower ID accuracy after the seventh game (game 1
of round 2), i.e., after switching partners. These effects are
also present in the empirical data. The overall ceiling and
the gain in accuracy, however, are lower in the simulation
than empirically (see Fig. 3a), and convergence in the
model appears to be relatively shallow.

A linear mixed-effects model was fitted to the simula-
tion’s predictions to test for some of the key empirical
effects. The linear regression model treated round, game
and condition (isolated pairs vs. communities) as indepen-
dent variables and predicted log-transformed ID accuracy.
A random intercept grouped by repetition was also fitted.
The regression showed expected effects for round
(bR = 0.015, values: 1–7) and game (bG = 0.008, values:
1–6), indicating improving accuracy with each game and
round. An interaction of round and game (bG:R = �0.001)
showed that the convergence leveled off in later rounds (as
expected). There was a main effect of condition (bIP =
0.081), and an interaction of condition (isolated pairs)
and round in the predicted direction (bIP:R = 0.014), show-
ing faster convergence within isolated pairs than within
communities. (Intercept b0 = �0.273. All p < 0.0005. All
b in log space. Independent variables were centered. p-val-
ues obtained via Markov-Chain Monte-Carlo (MCMC)
sampling; fitted parameters appeared normally distrib-
uted.) The fit of the model (means by round, game and con-
dition) with the empirical data yielded a Root Mean
Square Error (RMSE) of 0.13. Correlation is 0.68.

To understand the relation between the development in
identification accuracy and the learning mechanism of the
model, we contrasted identification via domain signs and
via cue-based retrieval (Section 3.2). Fig. 3 shows the
strong acquisition of domain signs in the first round;
domain signs are maintained in isolated pairs, while switch-
ing partners causes domain sign use to deteriorate. Nota-
bly, the second dyad fails to establish the same level of
domain sign use.

4.2. Discussion

The results demonstrate, first, that agents converge both
when retaining partners and when interacting with chang-
ing partners. Second, the results show that partner switch-
ing results in a setback in performance. This means that
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Fig. 3. Proportion of domain signs used in concept recognition of the
seven rounds of the game (regardless of whether the sign was guessed
correctly).
different dyads indeed converge on different signs for the
same concepts. Community agents recover from the loss
in performance (as human subjects do) and continue to
optimize their communication systems. Notably, the set-
back appears to be smaller for rounds 3–7, i.e., through
repeated partner switching, agents arrive at a vocabulary
that is less susceptible to disruption. While Fig. 2b suggests
an effect of condition on the ceiling that is achieved, more
simulations would have to be run to derive a prediction
(empirical data is not available beyond the 42 games).
Overall, the model’s results are qualitatively similar in
many ways to the human subjects. Convergence in the
community condition can be observed by a rise in perfor-
mance during game 1 in each round, that is, the game
played between agents that have not interacted before. In
both empirical and simulated data, this rise is present.
However, the magnitude of this effect is not reflected by
the model.

Domain signs are established by the dyads. However,
switching partners prevents the model from permanently
fixing the language system that it developed initially. While
communities eventually achieve similar levels of identifica-
tion accuracy, that is not primarily owed to a recovery in
domain sign use, but, we assume, also to strengthened
base-level activations of the target concepts.

With the strong difference in domain sign use, the model
displays a trait that could explain Fay, Garrod, and Roberts
(2008)’s finding: in their study, human raters found commu-
nity-evolved signs to be less iconic than the signs established
just between dyads, which were highly optimized, abstract
and less penetrable to newcomers.

5. Simulation 2: director and matcher roles

Garrod et al. (2007) compared the performance of their
participants in a comparable Pictionary task when a single
director remained in that role throughout the experiment
(single director, SD condition), vs. when participants
swapped roles after each round (double director, DD con-
dition). Identification accuracy was slightly higher for the
role-switching, double-director condition than in the sin-
gle-director condition (significantly so only in the final
rounds 5 and 6). This experiment is comparable to the iso-

lated pairs condition in our model. Our model can not only
simulate the role-switching conditions, but also predict
contrasts between isolated pairs and communities. The
general question here is whether unidirectional communi-
cation would be sufficient to develop a community lan-
guage. So, in this experiment, agents did not switch roles
after every concept conveyed, i.e. they remained either
director or matcher throughout the game. Otherwise, this
simulation mirrored Simulation 1.

5.1. Results

Identification accuracy for isolated pairs converged to a
lower level than in Simulation 1. Communities also failed
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to achieve the same level of accuracy when director and
matcher roles were not swapped (Fig. 2c).

A linear mixed-effects model was fitted to the data
obtained from Simulations 1 and 2, with condition
(isolated pairs vs. communities) and role swapping as inde-
pendent variables and predicted log-transformed ID accu-
racy; a random effect grouped repeated measures as in
Simulation 1. Role swapping led to reliably higher ID accu-
racy (bR = 0.051). Isolated pairs showed reliably higher ID
accuracy than communities (bIP = 0.062,p < 0.0005). A
reliable, positive interaction was found between role
swapping and the isolated pairs condition (bIP:R = 0.020).
(Intercept b0 = �0.324. All p < 0.0005. All b in log space;
estimates appear normal. p-values via MCMC sampling.)1

5.2. Discussion

This experiment showed that turn-taking aids in the
development of a common community vocabulary in the
case of the no-feedback, single-guess naming game. For
the isolated pairs condition, this parallels Garrod et al.’s
findings. Without turn-taking, the gap between communi-
ties and isolated pairs widens when unidirectional commu-
nication is used. It should be noted that, unlike Fay et al.’s
experiments and our simulation, Garrod et al.’s study
involved feedback about the guesses, potentially allowing
better convergence overall. Simulation 5 will investigate
the effect of explicit feedback on accuracy.

6. Simulation 3: noise in common ground

A vital assumption of the compositional semantics in
this model is that the agents start out with some common
knowledge. For instance, both director and matcher need
to accept that ambulances and buildings are strongly
related to the concept Hospital. However, the strength of
each link between the same two concepts may differ
between any two agents. This error does not necessarily
preclude the matcher from making the right inference.
The model allows us to test the role of inter-subject varia-
tion, and to predict the results of a lower overlap between
the knowledge bases of each agent. This simulation was run
repeatedly, varying only the level of variation in link
strengths between the agent’s ontologies. We measure the
mean ID accuracy during the last, seventh round. Other-
wise, this Simulation in the same as Simulation 1.

6.1. Results and discussion

Fig. 4 shows that mean identification accuracy (seventh
round, all games) decreases with increased levels of noise in
the subsymbolic knowledge state between agents. The
1 This model is constructed to fit a hypothetical situation. For
comparison with Simulation 1, we note that the fit of the model (means
by round, game and condition) with the empirical data yielded an RMSE
of 0.17. Correlation is 0.64.
model appears to deal reasonably well with discrepancies
between agent knowledge at levels of up to 0.3 (coefficient
in the noise mixture) for both isolated pairs and communi-
ties configurations; at higher noise levels, performance
drops more quickly. The same generally holds true when
taking all rounds into account. (At high noise levels, the
initial acquisition of domain signs still works, but agents
fail to converge further beyond the initial game or beyond
a lower ceiling.) Further work should reveal whether fur-
ther learning cycles can make up for the effect, i.e., medium
noise levels lead to slower convergence and the failure to
converge here is due to the limited number of games.
7. Simulation 4: ontology structure

Does the structure of relationships between ontological
concepts assist human communities in language conver-
gence? In this task, human participants as well as cognitive
models established new meanings of the concepts by
combination. Accuracy of retrieval of target concepts given
the combination of drawings depends on the ambiguity of
the drawing–concept relations; in other words, it depends
on how clearly the drawings identify the right target
concept.

Commonly, the frequency of co-occurrences of concepts
in text collections follow power-laws (we take co-occur-
rence to be an indicator of relatedness). It would not be
surprising if the mechanisms of language convergence
had evolved to benefit from the network topology in the
ontology. During the initial development of the model,
we noticed informally that the knowledge structure
described in Section 3.3 was necessary to establish positive,
reliable and strong convergence among the partipants;
attempts with different distributions did not yield the
desired effects.

In this experiment, we investigate the model’s predic-
tions w.r.t. ontology structure.
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7.1. Method

We ran the same simulation as in Simulation 1, but
replaced the ontology produced by sampling from the col-
location frequencies of the Wall Street journal with a ran-
dom one. Connection strengths (Sji) were randomly
sampled from a uniform distribution, whereas the parame-
ters were set so that the mean connection strength equaled
the mean of the log-odds of collocations from Simulation
1. All other parameters were the same. Generating this ran-
dom weighted graph, we produced the hypothetical case
where drawings and concepts in the knowledge base had
different, but equiprobable connections strengths. Thus,
target concepts could still be positively identified using
their related drawings.

7.2. Results

The uniformly distributed ontology led to a severe drop
in initial and also final accuracy. Fig. 5 shows that final
identification accuracy is near 0.20; compared to more than
0.85 when concept link weights are sampled from the Wall
Street journal collocations (Fig. 2b). The learning effect in
Simulation 1 led to a 30% reduction in error within the
seven rounds of convergence, while the present manipula-
tion reduced the error by about 12%.

7.3. Discussion

The results provide preliminary support of an intriguing
hypothesis: that the commonly found ontological structure
provides an evolutionary environment that is particularly
suited to the creation of sign systems through retrieval by
association. Uniformly distributed link weights render the
domain sign invention more difficult, as the semantic space
becomes more ambiguous and concepts within it become
less informative. It is possible that compositional learning
strategies in our model and the cognitive framework repre-
sent mechanisms that have adapted to benefit from the typ-
ical distribution of relationships between ontological
concepts.

There are ways of calibrating the alternative distribution
for comparison to the power-law distribution obtained
42 Games over 7 rounds
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Fig. 5. Convergence (model) when ontology link weights are sampled
from a uniform distribution with the same mean as in the samples of
collocations from the Wall Street Journal. Otherwise as in Fig. 2.
from the corpus data. Similarly, very different distributions
can be considered; however, we still obtained similar drops
in performance when sampling the weights from a uniform
distribution constructed so that the mean odds before the
log-transform were the same as the odds collocations in
Simulation 1.
8. Simulation 5: feedback

The game used in the experiments and simulations dis-
cussed here differs from the typical linguistic interaction
between humans in one important aspect. Humans usually
obtain some form of measure of success that determines
whether the communication was received correctly. In the
game, this measure of success is never explicit, and, at best,
implied. For example, speakers may retroactively decide
that a guess (of concept A) that they made earlier did not
work, because a new sign much more clearly indicates con-
cept A. (Each of the 20 concepts is only shown once within
each game.) Also, the time it takes for a guesser to deter-
mine the meaning of a sign may be indicative of its qualities
to the director (a sign that is recognized faster may be con-
sidered more reliable). It is likely that our model fails to
capture these subtle signals that may be used by humans.

To find out whether feedback makes an appreciable dif-
ference, we modified the simulations so that both models
(director and matcher) receive feedback after each interac-
tion. Director and matcher models learn or boost a sign in
declarative memory only if the feedback was positive, i.e.,
the matcher guessed the sign correctly. Otherwise, this sim-
ulation parallels the model and parametrization used in
Simulation 1.
8.1. Results

Our results (Fig. 2d) suggest stronger increase in ID
accuracy for both isolated pairs and communities than
was observed in the interactions without feedback. The first
game of each round in the community condition is indica-
tive of convergence across the social network; the ID accu-
racy of these games improves steadily.

A linear mixed-effects model was fitted to the data
obtained from Simulations 1 and 5, with condition (iso-
lated pairs vs. communities) and feedback as independent
variables, log-transformed ID accuracy as response, and
a random effect grouped repeated measures as in Simula-
tion 1. Feedback led to reliably higher ID accuracy
(bR = 0.066). Isolated pairs showed reliably higher ID
accuracy than Communities (bIP = 0.08, p < 0.0005). No
reliable interaction was found between feedback and the
isolated pairs condition (p > 0.4). (Intercept b0 = �0.273.
All other p < 0.0005. All b in log space; estimates appear
normal. p-values via MCMC sampling.)

The fit of the model (means by round, game and condi-
tion) with the empirical data yielded an RMSE of 0.08.
Correlation is 0.79.
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8.2. Discussion

With feedback, developing a common language becomes
much easier. We see convergence that surpasses the ceiling
of Simulations 1 and 2, and that is closer to human perfor-
mance. This is compatible with a view that human subjects
make use of subtle cues to the success of proposed domain
signs.

9. General discussion

The model replicates several of the characteristics of the
communities compared to the isolated pairs condition;
specifically the setbacks after switching partners for the
first few times and the ultimate convergence, despite very
limited feedback. We also arrive at a clear prediction:
bi-directionality is essential for linguistic convergence in
communities. The model fails to explain several other char-
acteristics of the data. While subjects gained most of their
ID accuracy during round 1, the model shows a more grad-
ual convergence towards functional vocabularies common
to the interacting agents and reaches a lower performance
level than do the human subjects. In informal experiments,
we found that the overall gain from the initial to last game
was not merely a matter of subsymbolic parameters; this
motivated Simulation 5, which describes a hypothetical
experiment where players in both conditions receive expli-
cit feedback about the success of the communication.

At this point, we do not emphasize parameter optimiza-
tion in order to achieve a better fit to the empirical data.
We believe that adaptation rates and the convergence ceil-
ing depend both on the difficulty of the task, the specific
materials (concepts) and the higher-level reasoning tools
employed to optimize the language system. The task in
Fay et al.’s experiment structured the list of concepts into
a tree (e.g., there were four actors), making the job of
drawing and guessing easier. Rather than just drawing
what seems most closely related to the target concept, the
experimental design invites them to choose a component
concept that best disambiguates the drawing in the light
of competing concepts (a head and a movie screen may
be descriptive of Robert De Niro, but they do not distin-
guish him from Brad Pitt). Neither specific differentiation
nor the precise choice of materials are modeled. Thus, we
may overestimate the difficulty of the task. As a further
simplifying assumption, our model always produced three
component drawings before a guess is made. Garrod
et al. (2007) design had participants give one another feed-
back about whether a drawing was thought to be recog-
nized. When a matcher recognized a drawing soon, then
this could have been used by the director as a sign of the
drawing’s utility. Such cues are not leveraged at all by
our model.

The model proposes a relatively mechanistic account of
domain sign construction. We assume that subjects, when
not paying attention to their communicative strategy or
when under time pressure, construct signs by associative
retrieval. They do not need to reason explicitly about the
ambiguity of their signs, or the efficiency of communica-
tion. Our experiments do not exclude the possibility of
implicit communication strategies that lead to more effi-
cient communication systems; however, the simulations
point out that these mechanisms are not strictly necessary
in order to achieve an improvement in one-on-one commu-
nication, even between changing partners.

However, the speed and overall ceiling of the perfor-
mance are clearly more limited than what would be neces-
sary in order to convincingly explain the emergence of a
common vocabulary in a community. Oliphant and Batali
(1997) argue, using a statistical model of learning, that
metacognition in the form of the verification steps we use
here greatly helps convergence. Our findings seem to sug-
gest that such a model, using ACT-R’s learning mecha-
nisms, can achieve at least some level of accuracy, even
with limited means to evaluate the success of a single com-
munication. At the same time, the simulations show that an
adaptation-only account might not suffice to explain the
strong, feedback-free community convergence.

As mentioned earlier, one possibility is that participants
might make more sophisticated use of subtle feedback sig-
nals than our model does. Those signals can be both inter-
nal and external. External signals could include the time or
number of drawings taken by the matcher to make a guess,
or any requests for clarification from the matcher to the
director. Our current model does not reflect any of these
aspects of the experiment. Feedback signals can also be
internal. In that regard, a fundamental metacognitive sig-
nal lies in our ability to recognize when a new sign combi-
nation is clearly better than the existing convention. This
kind of insight is essential in choosing between competing
signs in the absence of a clear external signal indicating
which of the competing concepts is correct. Currently the
ambiguity resolution (“verification”) part of the model
has no basis for making a choice one way or another and
has to reject them both. This leads to significant difficulty
in ensuring convergence in the presence of conflicting signs,
as often happens due to variation in knowledge bases, but
especially when switching partners in the community con-
dition, which will almost always result in a clash of estab-
lished domain signs. If such a metacognitive tie-breaking
signal were available, a number of potential resolution
strategies could be followed. One would be to mark the
downgraded domain sign as obsolete. Thus, despite its high
activation, the sign might still be retrieved but wouldn’t be
used any more. If one included an episodic record of the
decision, it could link the obsolete sign to the new, better
combination and thus use the strength of the conflict to
resolve it. More sophisticated search strategies are also
possible. For instance, when the matcher recognizes that
a sign combination is more specific to a concept already
identified, it could not only create a new domain sign for
the better combination, but modify the outdated one to
guess another concept. This search process could be very
effective if one factored in the hierarchical distribution of
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concepts into a few small groups of a few items (four
groups of four concepts) assuming that group identification
is unproblematic. This would result in adaptive clustering
dynamics in which the concepts gradually claim areas of
the combined multi-dimensional sign space for which they
are most specific. This in turn suggests some limitations of
this experiment in extending to real-world language learn-
ing. Often the space of possible vocabularies is not so
neatly and tractably circumscribed that a global search
strategy could be effective. It is for this reason that the
model examined here has limited itself to what is plausible
for natural language vocabulary convergence.

10. Conclusion

We have demonstrated the use of validated, cognitively
plausible constraints to explain an emergent, evolutionary
group process via multi-agent simulation. Subsymbolic
and symbolic learning within a validated human memory
framework can account for rapid adaptation of communi-
cation between dyads and for the slower acquisition of a
domain language in small speaker communities despite
very limited feedback about the success of each interaction.
Bi-directional communication is predicted to be necessary
for a common language system to emerge from communi-
ties. The effects are robust against some divergence in prior
common ground between agents. However, the model does
not yet account for the magnitude of the convergence
effect, which suggests that humans make use of many more
cues than the model in order to evaluate and promote com-
municative devices.

Our model of the horizontal emergence of a common
language in multi-agent communities is a first step to a
computational cognitive analysis of the learning processes
involved in creating combined signs and acquiring links
between them and arbitrary concepts, in other words, the
evolution of language. We have included only limited expli-
cit metacognitive reasoning over the full set of domain
signs in the model. The model is intended to reflect vocab-
ulary acquisition for larger communication systems than
the limited set of domain signs that was used in the design
of the Pictionary study. For large problems such as natural
languages, the model predicts slower convergence. Further
work will strive to demonstrate robust convergence with
realistic natural language examples, which will go well
beyond the empirical data that served as basis for this
study.
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