A Development Environment for Multimodal
Functional Unification Generation Grammars

David Reitter
Media Lab Europe
Dublin, Ireland
reitter@mle.media.mit.edu

1 Introduction

When grammar-based techniques for natural language generation (and anal-
ysis alike) find their way into collaborative projects or actual application,
big grammars tend to become hard to extend and debug. The MUG system
represents a new tool set with a graphical debugging environment for func-
tional unification grammars, which is designed to help grammar developers
inspect the results of their work.

The particular formalism supported is Multimodal Functional Unifica-
tion Grammar (MUG, [4]), which is similar to Functional Unification Gram-
mars (FUG: [2], [1]), but supports several coordinated modes, such as voice
prompts or structural and/or language-based screen displays. For each in-
put description, the grammar can generate a range of coherent realization
variants, which are ranked by a scoring function in order to optimize the
output towards situational and device-related factors.

2 Development with MUG

2.1 System overview

The MUG System is a development tool that consists of several components.
The MUG Formalism is a grammar specification syntax. The MUG Engine
handles the generation and adaptation process and offers interfaces to con-
nect external components. MUG Workbench is a graphical development
environment. The workbench works as an inspection tool, which runs a test
case, generating all possible variants of the output, and then gives access to
the various steps taken during content realization. We found this a faster
method than the step-by-step execution in a graphical debugger.!

!The generation system including the workbench will be available shortly as open
source, with documentation and for free.

2.2 MUG Formalism

The MUG formalism is close to Prolog syntax. One or more grammar files
contain components, which are usually made up of one big FD (additional
disjunctive or conjunctive unifications are allowed). Variables can be named
and always start with an upper-case letter. The grammar writer is allowed
to add detailed comments about components or their parts. MUG rules
(components) are attribute-value matrices (AVM), which regularly have in-
ternally shared substructures propagating information between the different
levels of linguistic representation. The grammar formalism implements this
functionality by using named variables.

Unification-based grammars just like other object-oriented formalisms
need to balance off the safety of strongly typed classes, which give error
messages at an early stage, and the fact that no typing supports exploratory
programming and quick prototyping. We address the issue with a type
hierarchy that is used to issue non-fatal warnings in case of possibly ill-
formed substructures in dialogue act input and grammar rules.

2.3 Inspecting variants of output

In the variants view (Fig. 1), these variants may be inspected and com-
pared: the workbench lists, for each variant, the components used. Variants
with the same generated text, but different structures, are automatically
flagged, as we found this to be a common problem during the development
of grammars. Generally, the variants view is a good way to deal with faulty
or extraneous variants.

Misspelled variable names, but also variables in the wrong positions in
AVMs are a common source of errors. Such variables remain unbound. The
workbench marks them clearly in the display. The developer can also inspect
variables easily and collapse or filter the rather large feature structures.
Syntax errors are shown, when the grammar is loaded via the workbench
user interface.

2.4 Log view

This view of the process is purely logical: there is no conceptual time-line
in unification-based grammars as in procedural programs. We found that a
more procedural view may help to spot problems with variants that failed
to come up, furthermore it is a way to spot efficiency bottlenecks or to
simply learn about how the formalism works. We offer a log view (Fig.
2) that enumerates all the steps that the MUG interpreter takes to apply
a grammar to the input. These steps are shown for each variant of the
output. This view allows inspection of the state of the sub-substructures as
they were before and after a component (for a given mode) was applied.

806 FASIL Fission Workbench

[Unittests]
[Compare Variant FDs] [Show last input] [Grammar] [Model]
[List Variants] [Reload MUG] [Run regression tests]
[Demo Variants] [Attribute Filters] ! i
[MUG Fission Log] a
E Y O R m
Variant 1 (Score: 1.88881) Structure: status_1/screen_static ‘
8 Evaluate this! \
screen_dynamic: Internal Representation |
i - Apply filter: | Nane = |
Do you want to send the email regarding |
Irish weather to Mick Cody ? type askconfirmation |
Yes EI action - |
i type task :
screen_static: objectid abj1 |
| realize |
Sending Email scope w14 o/
To: Mick Cody screen_dynamic
. cat task
[es int__rule action_task 4
bec: int_uni complete
Subject: Irish weather realized 1
G\'day mates. Happy e E\m]
Body: d text =concat{=to W8~
Y Everybody! -Dave
v screen_static
voice: ‘ realized "
‘Do you want to send the email ? ' task
type send_email
1 ambiguous structures: e ax ity il
+email
1.1 Structure (Score:1.88881) +email_refexp
objectid abj4
Utility: 3.40833, Cognitive Cost: 0.85 (screen) + polarity positive
1.51952 (voice) realizo
Pasition: 41
o + FD: complete all scope 8- <asi/email>
+screen_dynamic
Differences compared to previous structure: +screen_static
+10_refexp
e + FD: multimodal_2 screen_dynamic +voice
« + FD: multimodal_3 screen_static
« + FD: multimodal_1 voice L0 L Bl
« + FD: askconfirmation_1 screen_dynamic +voice 3
e + FD: status_1 screen_static + hd
e + FD: askconfirmation 1 voice X (L5

Figure 1: Variants and a large AVM. Attributes can be collapsed.

A useful feature in this view is the marking of steps that were undone by
means of backtracking, because — at a later stage in the generation process —
an application of a rule failed. In many cases, the cause of the failure is a bug
in the grammar. In other cases, it is desired behavior, but computationally
inefficient. Such effects are visualized in the log view.

3 Applications

The MUG Workbench aided two experienced and one novice grammar writ-
ers to create a multimodal UI for personal information management (han-
dling e-mail), which contains 126 components (190 with disjunction com-
piled), and a second, smaller MUG (39 comp.), which generates a short
coherent discourse with pronouns. To test (see [3]) and also demonstrate
the grammar, multimodal output can be made on any networked device
(e.g. PDA) with an HTML client, with text-to-speech voice rendered on the
server, as well as on simulated devices on the local workstation. A dialogue
system in Java will demonstrate the use of MUG a complete environment.

Comp: list 2 > [FD
FD] ==> Cat: ui_chooseone (screen_dynamic)
: ui_chooseone_l > [FD

ESE

FD] ==> Cat: disambiguate (voice)

Comp: disambiguate 1 > IFD

FD > Cat: list (voice)

: list_lb == [FD

FD] ==> Cat: ui_chooseone (voice)

: ui_chooseone_l > [FD

FD] ==> Cat: template_mod (screen_dynamic)

 Egkgk

FD c
Failed - ba

tracking

Comp: template_mod_t2 = [FD
FD > Cat: objtype (screen_dynamic)
Failed - backtracking

Comp: templ
FD > Ca
Failed - backtracki

3 > [FD
pe (screen_dynamic)
ng

(a)

Figure 2: a) In the log view, steps taken back during backtracking (because
they didn’t lead to valid solutions) are greyed out. b) life-size results can be

L UL

Evaluate this
Internal Repr

Apply filter:

determiner
determiner_sti

field_vp

realized
screen_dynam

target_string

Sending Email

| email to Fred Cummins ?

To: Fred Cummins

cc: Erin Panttaja

bee:

Subject:|Aussie weather

G'day mates. The

Body: |(...) Everybody!

-Dave

Do you want to send the

demonstrated from the workbench (design: E. Panttaja)

Acknowledgements

The author would like to thank Erin Panttaja for her substantial assistance in
the development of the MUG System, as well as Fred Cummins, Eva Maguire,
Vitor Santos Costa and Jan Wielemaker. Part of this research was funded by the
European Commission under the FASiL project, contract number: IST-2001-38685.

References

[1] Michael Elhadad and Jacques Robin. Controlling content realization with func-
tional unification grammar. In Proc. of the 6th International Workshop on

NLG. Springer, Lecture Notes in Al, 1992.

[2] Martin Kay. Functional grammar. In Proceedings of the Fifth Meeting of the

Berkeley Linguistics Society, pages 142-158, Berkeley, CA, 1979.

[3] Erin Panttaja, David Reitter, and Fred Cummins. The evaluation of adaptable
multimodal system outputs. In Proceedings of the Workshop on Multilingual

Linguistic Resources (MLR2004), at COLING, to appear 2004.

[4] David Reitter, Erin Marie Panttaja, and Fred Cummins. UT on the fly: Generat-
ing a multimodal user interface. In Proceedings of HLT-NAACL-2004, Boston,

2004.

