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Abstract

We examine the benefits of visual context in
training neural language models to perform
next-word prediction. A multi-modal neural
architecture is introduced that outperform its
equivalent trained on language alone with a
2% decrease in perplexity, even when no vi-
sual context is available at test. Fine-tuning
the embeddings of a pre-trained state-of-the-
art bidirectional language model (BERT) in
the language modeling framework yields a
3.5% improvement. The advantage for train-
ing with visual context when testing without
is robust across different languages (English,
German and Spanish) and different models
(GRU, LSTM, �-RNN, as well as those that
use BERT embeddings). Thus, language mod-
els perform better when they learn like a baby,
i.e, in a multi-modal environment. This find-
ing is compatible with the theory of situated
cognition: language is inseparable from its
physical context.

1 Introduction

The theory of situated cognition postulates that a
person’s knowledge is inseparable from the physi-
cal or social context in which it is learned and used
(Greeno and Moore, 1993). Similarly, Perceptual
Symbol Systems theory holds that all of cogni-
tion, thought, language, reasoning, and memory, is
grounded in perceptual features (Barsalou, 1999).
Knowledge of language cannot be separated from
its physical context, which allows words and sen-
tences to be learned by grounding them in refer-
ence to objects or natural concepts on hand (see
Roy and Reiter, 2005, for a review). Nor can
knowledge of language be separated from its so-
cial context, where language is learned interac-
tively through communicating with others to facil-
itate problem-solving. Simply put, language does
not occur in a vacuum.

Yet, statistical language models, typically con-
nectionist systems, are often trained in such a vac-
uum. Sequences of symbols, such as sentences
or phrases composed of words in any language,
such as English or German, are often fed into
the model independently of any real-world con-
text they might describe. In the classical language
modeling framework, a model learns to predict a
word based on a history of words it has seen so far.
While these models learn a great deal of linguis-
tic structure from these symbol sequences alone,
acquiring the essence of basic syntax, it is highly
unlikely that this approach can create models that
acquire much in terms of semantics or pragmat-
ics, which are integral to the human experience
of language. How might one build neural lan-
guage models that “understand” the semantic con-
tent held within the symbol sequences, of any lan-
guage, presented to it?

In this paper, we take a small step towards a
model that understands language as a human does
by training a neural model jointly on correspond-
ing linguistic and visual data. From an image-
captioning dataset, we create a multi-lingual cor-
pus where sentences are mapped to the real-world
images they describe. We ask how adding such
real-world context at training can improve lan-
guage model performance. We create a unified
multi-modal connectionist architecture that incor-
porates visual context and uses either �-RNN
(Ororbia II et al., 2017), Long Short Term Mem-
ory (LSTM; Hochreiter and Schmidhuber, 1997)
or Gated Recurrent Unit (GRU; Cho et al., 2014)
units. We find that the models acquire more
knowledge of language than if they were trained
without corresponding, real-world visual context.



2 Related Work

Both behavioral and neuroimaging studies have
found considerable evidence for the contribu-
tion of perceptual information to linguistic tasks
(Barsalou, 2008). It has long been held that lan-
guage is acquired jointly with perception through
interaction with the environment (e.g. Frank et al.,
2008). Eye-tracking studies show that visual
context influences word recognition and syntactic
parsing from even the earliest moments of com-
prehension (Tanenhaus et al., 1995).

Computational cognitive models can account
for bootstrapped learning of word meaning and
syntax when language is paired with perceptual
experience (Abend et al., 2017) and for the abil-
ity of children to rapidly acquire new words by
inferring the referent from their physical environ-
ment (Alishahi et al., 2008). Some distributional
semantics models integrate word co-occurrence
data with perceptual data, either to achieve a bet-
ter model of language as it exists in the minds
of humans (Baroni, 2016; Johns and Jones, 2012;
Kievit-Kylar and Jones, 2011; Lazaridou et al.,
2014) or to improve performance on machine
learning tasks such as object recognition (Frome
et al., 2013; Lazaridou et al., 2015a), image
captioning (Kiros et al., 2014; Lazaridou et al.,
2015b), or image search (Socher et al., 2014).

Integrating language and perception can facil-
itate language acquisition by allowing models to
infer how a new word is used from the perceptual
features of its referent (Johns and Jones, 2012) or
to allow for fast mapping between a new word and
a new object in the environment (Lazaridou et al.,
2014). Likewise, this integration allows models to
infer the perceptual features of an unobserved ref-
erent from how a word is used in language (Johns
and Jones, 2012; Lazaridou et al., 2015b). As a re-
sult, language data can be used to improve object
recognition by providing information about un-
observed or infrequently observed objects (Frome
et al., 2013) or for differentiating objects that often
co-occur in photos (e.g., cats and sofas; Lazaridou
et al., 2015a).

By representing the referents of concrete nouns
as arrangements of elementary visual features
(Biederman, 1987), Kievit-Kylar and Jones (2011)
found that the visual features of nouns capture
semantic typicality effects, and that a combined
representation, consisting of both visual features
and word co-occurrence data, more strongly cor-

relates with human judgments of semantic simi-
larity than representations extracted from a cor-
pus alone. While modeling similarity judgments
is distinct from the problem of predictive language
modeling, we take this finding as evidence that vi-
sual perception informs semantics, which suggests
there are gains to be had integrating perception
with predictive language models.

In contrast to prior work in machine learn-
ing, where mappings between vision and language
have been examined (Kiros et al., 2014; Vinyals
et al., 2015; Xu et al., 2015), our goal in integrat-
ing visual and linguistic data is not to accomplish
a task such as image search/captioning that inher-
ently requires a mapping between these modali-
ties. Rather, our goal is to show that, since percep-
tual information is intrinsic to how humans pro-
cess language, a language model that is trained
on both visual and linguistic data will be a bet-
ter model, consistently across languages, than one
trained on linguistic data alone.

Due to the ability of language models to con-
strain predictions on the basis of preceding con-
text, language models play a central role in
natural-language and speech processing applica-
tions. However, the psycholinguistic questions
surrounding how people acquire and use linguistic
knowledge are fundamentally different from the
aims of machine learning. Using NLP-style lan-
guage models to address psycholinguistic ques-
tions is a new approach that integrates well with
the theory of predictive coding in cognitive psy-
chology (Clark, 2013; Rao and Ballard, 1999). For
language processing this means that when reading
text or comprehending speech, humans constantly
anticipate what will be said next. Predictive cod-
ing in humans is a fast, implicit cognitive process
similar to the kind of sequence learning that recur-
rent neural models excel at. We do not propose re-
current neural models as direct accounts of human
language processing. Instead, our intent is to use
a general purpose machine learning algorithm as a
tool to investigate the informational characteristics
of the language learning task. More specifically,
we use machine learning to explore the question
as to whether natural languages are most easily
learned when situated in an environmental context
and grounded in perception.



3 The Multi-modal Neural Architecture

We will evaluate the multi-modal training ap-
proach on several well-known complex architec-
tures, including the LSTM, and further examine
the effect of using pre-trained BERT embeddings.
However, to simply describe the the neural model,
we start from the Differential State Framework
(DSF; Ororbia II et al., 2017), which unifies gated
recurrent architectures under the general view that
state memory is a simple parametrized mixture of
“fast” and “slow” states. Our aim is to model se-
quences of symbols, such as the words that com-
pose sentences, where at each time we process xt,
or the one-hot encoding of a token1

One of the simplest models that can be derived
from the DSF is the �-RNN (Ororbia II et al.,
2017). A �-RNN is a simple gated RNN that
captures longer-term dependencies in sequences
through the use of a parametrized, flexible state
“mixing” function. The model computes a new
state at a given time step by comparing a fast
state (which is proposed after accounting for the
current token) and a slow state (a form of long-
term memory). The model is defined by param-
eters ⇥ = {W,V,br,�1,�2,↵} (input-to-hidden
weights W , recurrent weights V , gating-control
coefficients �1,�2,↵, and the rate-gate bias br).
Inference is defined as:

drec
t = V ht! 1, d

dat
t = Wew,t (1)

d1
t = ↵⌦ drec

t ⌦ ddat
t (2)

d2
t = �1 ⌦ drec

t + �2 ⌦ ddat
t (3)

zt = �hid(d
1
t + d2

t ) (4)
ht = �((1� r)⌦ zt + r⌦ ht! 1) (5)

r = 1/(1 + exp(�[ddat
t + br])) (6)

where ew,t is the 1-of-k encoding of the word w
at time t. Note that {↵,�1,�2} are learnable bias
vectors that modulate internal multiplicative inter-
actions. The rate gate r controls how slow and
fast-moving memory states are mixed inside the
model. In contrast to the model originally trained
in Ororbia II et al. (2017), the outer activation is
the linear rectifier, �(v) = max(0, v), instead
of the identity or hyperbolic tangent, because we
found that it worked much better. The inner acti-
vation function �hid(v) is tanh(v) = (e(2v)! 1)

(e(2v)+1)
.

1One-hot encoding represents tokens as binary-valued
vectors with one dimension for each type of token. Only one
dimension has a non-zero value, indicating the presence of a
token of that type.

To integrate visual context information into the
�-RNN, we fuse the model with a neural vision
system, motivated by work done in automated im-
age captioning (Xu et al., 2015). We adopt a
transfer learning approach and incorporate a state-
of-the-art convolutional neural network into the
�-RNN model, namely the Inception-v3 network
(Szegedy et al., 2016)2, in order to create a multi-
modal �-RNN model (MM-�-RNN; see Figure
1). Since our focus is on language modeling, the
parameters of the vision network are fixed.

To obtain a distributed representation of an im-
age from the Inception-v3 network, we extract
the vector produced from the final max-pooling
layer, c, after running an image through the model
(note that this operation occurs right before the fi-
nal, fully-connected processing layers which are
usually task-specific parameters, such as in ob-
ject classification). The �-RNN can make use of
the information in this visual context vector if we
modify its state computation in one of two ways.
The first way would be to modify the inner state
to be a linear combination of the data-dependent
pre-activation, the filtration, and a learned linear
mapping of c as follows:

zt = �hid(d
1
t + d2

t +Mc+ b) (7)

where M is a learnable synaptic connections ma-
trix that connects the visual context representation
with the inner state. The second way to modify the
�-RNN would be change its outer mixing func-
tion instead:

ht = �([(1� r)⌦ zt + r⌦ ht! 1]⌦ (Mc))
(8)

Here in Equation 8 we see the linearly-mapped
visual context embedding interacts with the cur-
rently computation state through a multiplicative
operation, allowing the visual-context to persist
and work in a longer-term capacity. In either sit-
uation, using a parameter matrix M frees us from
having to set the dimensionality of the hidden state
to be the same as the context vector produced by
the Inception-v3 network.

We do not use regularization techniques with
this model. The application of regularization tech-
niques is, in principle, possible (and typically im-

2In preliminary experiments, we also examined VGGNet
and a few others, but found that the Inception worked the best
when it came to acquiring more general distributed represen-
tations of natural images.



Figure 1: Integration of visual information in an unrolled network (here, the MM-�-RNN. Grey-dashed: identity
connections; black-dash-dotted: next-step predictions; solid-back lines: weight matrices.

proves performance of the �-RNN), but it is dam-
aging to performance in this particular case, where
an already compressed and regularized represen-
tation of the images from Inception-v3 serves as
input to the multi-modal language modeling net-
work.

Let w1, . . . , wN be a variable-length sequence
of N words corresponding to an image I . In gen-
eral, the distribution over the variables follows the
graphical model:

P✓(w1, . . . , wT |I) =
TY

t=1

P⇥(wt|w<t, I)

For all model variants the state ht calculated at
any time step is fed into a maximum-entropy clas-
sifier3 defined as:

P (w,ht) = P⇥(w|ht) =
exp (wTUht)P

w! exp ((w")TUht)

The model parameters ⇥ optimized with respect
to the sequence negative log likelihood:

L = �
NX

i=1

TX

t=1

logP⇥(wt|h)

We differentiate with respect to this cost function
to calculate gradients.

3Bias term omitted for clarity.

3.1 GRU, LSTM and BERT variants

Does visually situated language learning benefit
from the specific architecture of the �-RNN, or
does the proposal work with state-of-the-art lan-
guage models? We applied the same architecture
to Gated Recurrent Units (GRU, Cho et al., 2014),
Long Short Term Memory (LSTM, Hochreiter and
Schmidhuber, 1997), and BERT (Devlin et al.,
2018). We train these models on text alone and
compare to the two variations of the multi-modal
�-RNN, as described in the previous section. The
multi-modal GRU, with context information di-
rectly integrated, is defined as follows:

dc = Mc

zt = �(Wzxt + Vzht! 1)

rt = �(Wrxt + Vrht! 1)

bht = tanh(Wbhxt + Vbh(rt ⌦ ht! 1))

ht = [zt ⌦ ht! 1 + (1� zt)⌦ bht]⌦ dc

where we note the parameter matrix M that maps
the visual context c into the GRU state effectively
gates the outer function.4 The multi-modal vari-
ant of the LSTM (with peephole connections) is

4We tried both methods of integration, Equations 7 and 8.
The second formulation gave better performance.



defined as follows:

dc = Mc

ht = [rt ⌦ �(ct)]⌦ dc, where,
rt = �(Wrxt + Vrht! 1 + Urct)

ct = ft ⌦ ct! 1 + it ⌦ zt, where,
zt = �(Wzxt + Vzht! 1),
it = �(Wixt + Viht! 1 + Uict! 1),
ft = �(Wfxt + Vfht! 1 + Ufct! 1).

We furthermore created one more variant of each
multi-modal RNN by initializing a portion of
their input-to-hidden weights with embeddings ex-
tracted from the Bidirectional Encoder Represen-
tations from Transformers (BERT) model (Devlin
et al., 2018). This would correspond to initializing
W in the �-RNN, Wi in the LSTM, and Wĥ in
the GRU. Note that in our results, we only report
the best-performing model, which turned out to be
the LSTM variant. Since the models in this work
are at the word level and BERT operates at the
subword level, we create initial word embeddings
by first decomposing each word into its appropri-
ate subword components, according to the Word-
Pieces model (Wu et al., 2016), and then extract
the relevant BERT representation for each. For
each subword token, a representation is created by
summing together a specific learned token embed-
ding, a segmentation embedding, and a position
embedding. For a target word, we linearly com-
bine subword input representations and initialize
the relevant weight with this final embedding.

4 Experiments

The experiments in this paper were conducted
using the MS-COCO image-captioning dataset.5

Each image in the dataset has five captions pro-
vided by human annotators. We use the captions
to create five different ground truth splits. We
translated each ground truth split into German and
Spanish using the Google Translation API, which
was chosen as a state-of-the-art, independently
evaluated MT tool that produces, according to our
inspection of the results, idiomatic, and syntacti-
cally and semantically faithful translations. To our
knowledge, this represents the first Multi-lingual
MSCOCO dataset on situated learning. We tok-
enize the corpus and obtain a 16.6K vocabulary for
English, 33.2K for German and 18.2k for Spanish.

5https://competitions.codalab.org/competitions/3221

As our primary concern is the next-step predic-
tion of words/tokens, we use negative log likeli-
hood and perplexity to evaluate the models. This
is different from the goals of machine translation
or image captioning, which, in most cases, is con-
cerned with a ranking of possible captions where
one measures how similar the model’s generated
sequences are to ground-truth target phrases.

Baseline results were obtained with neural lan-
guage models trained on text alone. For the
�-RNN, this meant implementing a model us-
ing only Equations 1-7. The best results were
achieved using the BERT Large model (bidirec-
tional Transformer, 24 layers, 1024dims, 16 atten-
tion heads: Devlin et al. 2018). We used the large
pretrained model and then trained with visual con-
text.

All models were trained to minimize the se-
quence loss of the sentences in the training split.
The weight matrices of all models were initial-
ized from uniform distribution, U(�0.1, 0.1), bi-
ases were initialized from zero, and the �-RNN-
specific biases {↵,�1,�2} were all initialized to
one. Parameter updates calculated through back-
propagation through time required unrolling the
model over 49 steps in time (this length was de-
termined based on validation set likelihood). All
symbol sequences were zero-padded and appro-
priately masked to ensure efficient mini-batching.
Gradients were hard-clipped at a magnitude bound
of l = 2.0. Over mini-batches of 32 samples,
model parameters were optimized using simple
stochastic gradient descent (learning rate � = 1.0
which was halved if the perplexity, measured at the
end of each epoch, goes up three or more times).

To determine if our multi-modal language mod-
els capture knowledge that is different from a text-
only language model, we evaluate each model
twice. First, we compute the model perplexity on
the test set using the sentences’ visual context vec-
tors. Next, we compute model perplexity on test
sentences by feeding in a null-vector to the multi-
modal model as the visual context. If the model
did truly pick up some semantic knowledge that
is not exclusively dependent on the context vector,
its perplexity in the second setting, while naturally
worse than the first setting, should still outperform
text-only baselines.

In Table 1, we report each model’s negative log
likelihood (NLL) and per-word perplexity (PPL).
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Figure 2: Training �-RNNs in each language (English, German, Spanish). Baseline model is trained and evaluated
on language (L-L), the full model uses the multi-modal signal (LV-LV), and the target model is trained on LV, but
evaluated on L only (LV-L).

PPL is calculated as:

PPL = exp
⇥
� (1/N)

NX

i=1

TX

t=1

logP⇥(wt|h)
⇤

We observe that in all cases the multi-modal mod-
els outperform their respective text-only baselines.
More importantly, the multi-modal models, when
evaluated without the Inception-v3 representations
on holdout samples, still perform better than the
text-only baselines. The improvement in language
generalization can be attributed to the visual con-
text information provided during training, enrich-
ing its representations over word sequences with
knowledge of actual objects and actions.

Figure 2 shows the validation perplexity of the
�-RNN on each language as a function of the first
15 epochs of learning. We observe that through-
out learning, the improvement in generalization
afforded by the visual context c is persistent. Vali-
dation performance was also tracked for the var-
ious GRU and LSTM models, where the same
trend was also observed.

4.1 Model Analysis

We analyze the decoders of text-only and multi-
modal models. We examine the parameter matrix
U , which is directly involved in calculating the
predictions of the underlying generative model. U
can be thought of as “transposed embeddings”, an
idea that has also been exploited to introduce fur-
ther regularization into the neural language model
learning process (Press and Wolf, 2016; Inan et al.,

2016). If we treat each row of this matrix as
the learned embedding for a particular word (we
assume column-major orientation in implementa-
tion), we can calculate its proximity to other em-
beddings using cosine similarity.

Table 2 shows the top ten words for several ran-
domly selected query terms using the decoder pa-
rameter matrix. By observing the different sets
of nearest-neighbors produced by the �-RNN and
the multi-modal �-RNN (MM-�-RNN), we can
see that the MM-�-RNN appears to have learned
to combine the information from the visual con-
text with the token sequence in its representations.
For example, for the query “ocean”, we see that
while the �-RNN does associate some relevant
terms, such as “surfing” and “beach”, it also as-
sociates terms with marginal relevance to “ocean”
such as “market” and “plays”. Conversely, nearly
all of the terms the MM-�-RNN associates with
“ocean” are relevant to the query. The same is
true for “kite” and “subway”. For “racket”, while
the text-only baseline mostly associates the query
with sports terms, especially sports equipment like
“bat”, the MM-�-RNN is able to relate the query
to the correct sport, “tennis”.

4.2 Conditional Sampling

To see how visual context influences the lan-
guage model, we sample the conditional genera-
tive model. Beam search (size 13) allows us to
generate full sentences (Table 3). Words were
ranked based on model probabilities.



Table 1: Generalization performance as measured by negative log likelihood (NLL) and perplexity (PPL). Lower
values indicate better performance. Baseline model (L-L) trained and evaluated on linguistic data only. Full model
(LV-LV) trained and evaluated on both linguistic and visual data. Blind model (LV-L) trained on both but evaluated
on language only. The difference between L-L and LV-L illustrates the performance improvement. German
and Spanish data are machine-translated (MT) and provide additional, but correlated, evidence. For comparison,
Devlin et al. (2018) report a perplexity of 3.23 for their (broad) English test data, using the same base model we
use here to define input representations.

English German MT Spanish MT

Model (Type) Test-NLL Test-PPL Test-NLL Test-PPL Test-NLL Test-PPL

�-RNN (L-L) 2.714 15.086 2.836 17.052 2.546 12.755

MM-�-RNN (LV-LV) 2.645 14.086 2.777 16.082 2.405 11.082

MM-�-RNN (LV-L) 2.694 14.786 2.808 16.582 2.458 11.682

GRU (L-L) 2.764 15.871 2.854 17.369 2.554 12.866

MM-GRU (LV-LV) 2.654 14.189 2.790 16.285 2.426 11.3089

MM-GRU (LV-L) 2.687 14.689 2.815 16.701 2.466 11.781

LSTM (L-L) 2.722 15.217 2.814 17.070 2.494 12.114

MM-LSTM (LV-LV) 2.645 14.089 2.773 16.001 2.405 11.081

MM-LSTM (LV-L) 2.708 15.002 2.822 16.806 2.487 12.028

BERT+LSTM (L-L) 2.534 12.6011 2.702 14.9127 2.303 10.0011

BERT+MM-LSTM (LV-LV) 2.475 11.8776 2.661 14.3124 2.223 9.2319

BERT+MM-LSTM (LV-L) 2.503 12.2196 2.700 14.8102 2.283 9.8102

5 Discussion and Conclusions

Perceptual context improves training multi-modal
neural models compared to training on language
alone. Specifically, augmenting a predictive lan-
guage model with images that illustrate the sen-
tences being learned enhances its next-word pre-
diction ability. The performance improvement
persists even in situations devoid of visual input,
when the model is used as a pure language model.

The near state-of-the-art language model, using
BERT, reflects the case of human language acqui-
sition less than do the other models, which were
trained “ab initio” in a situated context. BERT
is pre-trained on a very large corpus, but it still
picked up a performance improvement when fine-
tuned on the visual context and language, as com-
pared to the corpus language signal alone. We do
not expect this to be a ceiling for visual augmenta-
tion: in the world of training LMs, the MS COCO
corpus is, of course, a small dataset.

Neural language models, as used here, are con-
tenders as cognitive and psycholinguistic models
of the non-symbolic, implicit aspects of language
representation. There is a great deal of evidence
that something like a predictive language model

exists in the human mind. The surprisal of a word
or phrase refers to the degree of mismatch between
what a human listener expected to be said next and
what is actually said, for example, when a gar-
den path sentence forces the listener to abandon
a partial, incremental parse (Ferreira and Hender-
son, 1991; Hale, 2001). In the garden path sen-
tence “The horse raced past the barn fell”, the fi-
nal word “fell” forces the reader to revise their
initial interpretation of “raced” as the active verb
(Bever, 1970). More generally, the idea of pre-

dictive coding holds that the mind forms expec-
tations before perception occurs (see Clark, 2013,
for a review). How these predictions are formed is
unclear. Predictive language models trained with
a generic neural architecture, without specific lin-
guistic universals, are a reasonable candidate for
a model of predictive coding in language. This
does not imply neuropsychological realism of the
low-level representations or learning algorithms,
and we cannot advocate for a specific neural ar-
chitecture as being most plausible. However, we
can show that an architecture that predicts linguis-
tic input well learns better when its input mimics
that of a human language learner.



Table 2: The ten words most closely related to the bolded query word, rank ordered, trained with (MM-�-RNN)
and without (�-RNN) visual input.

Ocean Kite Subway Racket

�-RNN +MM �-RNN +MM �-RNN +MM �-RNN +MM

surfing boats plane kites train railroad bat bat
sandy beach kites airplane passenger train batter players
filled pier airplane plane railroad locomotive catcher batter
beach wetsuit surfboard airplanes trains trains skateboard swing
market cloth planes planes gas steam umpire catcher
crowded surfing airplanes airliner commuter gas soccer hitter
topped windsurfing boats helicopter trolley commuter women ball
plays boardwalk jet jets locomotive passenger pedestrians umpire
cross flying aircraft biplane steam crowded players tennis
snowy biplane jets jet it’s trolley uniform tatoos

A cognitive model of language processing
might distinguish between symbolic language
knowledge and processes that implement compo-
sitionality to produce semantics on the one hand,
and implicit processes that leverage sequences and
associations to produce expectations. With re-
spect to acquiring the latter, implicit and predic-
tive model, we note that children are exposed to a
rich sensory environment, one more detailed than
the environment provided to our model here. If
even static visual input alone improves language
acquisition, then what could a sensorily rich en-
vironment achieve? When a multi-modal learner
is considered, then, perhaps, the language acqui-
sition stimulus that has been famously labeled to
be rather poor (Chomsky, 1959; Berwick et al.,
2013), is not so poor after all.
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(a) English GRUs.
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(b) German GRUs.
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(c) Spanish GRUs.
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(d) English LSTMs.
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(e) German LSTMs.
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(f) Spanish LSTMs.

Appendix: Comparison of learning curves for the GRUs and LSTMs in each language (English, German, Spanish).
To augment Figure 2 in the main paper, we also show the learning curves for all models experimented with in this
paper beyond the �-RNN. Validation learning curves are provided for the GRU and LSTM language models, both
multimodal and unimodal variations.


